Applicability of Hollow Fiber Strip Dispersion for the Removal of Metal Ions from Aqueous Streams

Abstract

The present paper focuses on the working and application of hollow fiber strip dispersion system for the removal of metal ions from aqueous streams. Conventional separation methods like chemical precipitation, adsorption, ion exchange and solvent extraction are in use to eliminate and recover heavy metals from aqueous solutions, but suffer from their inherent limitations like less efficiency, high operating costs, secondary sludge production and disposal. Liquid membrane in comparison with these methods offers little investment, high flux, less solvent and energy consumption. Supported liquid membrane is preferred for the removal and reclamation of metal ions as this technique offers simultaneous extraction and stripping. Hollow fiber supported liquid membrane is being used successfully for the separation of various metal ions, but instability and extended functioning are the concerned issues for industrial usage. Pseudo-emulsion hollow fiber strip dispersion system solves the instability issue by maintaining uninterrupted supply of organic membrane phase in pores and successfully removes the metal ions. This paper mainly focuses on the effect of various parameters like concentration of metal, carrier and type of diluent on the removal of metal ions from aqueous streams. Permeation model development and evaluation of mass transfer coefficients are also discussed here.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    V.S. Kislik, in Liquid Membranes: Principles and Applications in Chemical Separations and Wastewater Treatment, ed. by V.S. Kislik (Elsevier, Great Britain, 2010), p. 5

    Google Scholar 

  2. 2.

    V.S. Kislik, Solvent Extraction: Classical and Novel Approaches, 1st edn. (Elsevier, Great Britain, 2012), pp. 501–502

    Google Scholar 

  3. 3.

    P. Dżygiel, P.P. Wieczorek, in Liquid Membranes: Principles and Applications in Chemical Separations and Wastewater Treatment, ed. by V.S. Kislik (Elsevier, Great Britain, 2010), p. 76

    Google Scholar 

  4. 4.

    P.K. Parhi, J. Chem. (2013). https://doi.org/10.1155/2013/618236

    Article  Google Scholar 

  5. 5.

    K. Nath, Membrane Separation Processes, 1st edn. (Prentice-Hall of India Private Limited, New Delhi, 2008), p. 244

    Google Scholar 

  6. 6.

    A. Gabelman, S.T. Hwang, J. Membr. Sci. (1999). https://doi.org/10.1016/S0376-7388(99)00040-X

    Article  Google Scholar 

  7. 7.

    Z. Ren, W. Zhang, Y. Liu, Y. Dai, C. Cui, Chem. Eng. Sci. (2007). https://doi.org/10.1016/j.ces.2007.06.005

    Article  Google Scholar 

  8. 8.

    T. Pirom, A. Arponwichanop, U. Pancharoen, T. Yonezawa, S. Kheawhom, Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-25771-4

    Article  Google Scholar 

  9. 9.

    H.P. Kohli, S. Gupta, M. Chakraborty, Colloids Surf. A (2020). https://doi.org/10.1016/j.colsurfa.2019.124308

    Article  Google Scholar 

  10. 10.

    S.C. Roy, J.V. Sonawane, N.S. Rathore, A.K. Pabby, P. Janardan, R.D. Changrani, P.K. Dey, S.R. Bharadwaj, Sep. Sci. Technol. (2008). https://doi.org/10.1080/01496390802064141

    Article  Google Scholar 

  11. 11.

    H.P. Kohli, S. Gupta, M. Chakraborty, J. Wat. Process Eng. (2019). https://doi.org/10.1016/j.jwpe.2019.100880

    Article  Google Scholar 

  12. 12.

    J.V. Sonawane, A.K. Pabby, A.M. Sastre, AIChE J. (2008). https://doi.org/10.1002/aic.11371

    Article  Google Scholar 

  13. 13.

    K. Wieszczycka, M. Regel-Rosocka, K. Staszak, A. Wojciechowska, M.T.A. Reis, M.R.C. Ismael, M.L.F. Gameiro, J.M.R. Carvalho, Sep. Purf. Technol. (2015). https://doi.org/10.1016/j.seppur.2015.09.017

    Article  Google Scholar 

  14. 14.

    J.V. Sonawane, A.K. Pabby, A.M. Sastre, J. Membr. Sci. (2007). https://doi.org/10.1016/j.memsci.2007.05.016

    Article  Google Scholar 

  15. 15.

    J.V. Sonawane, A.K. Pabby, A.M. Sastre, J. Hazard. Mater. (2010). https://doi.org/10.1016/j.jhazmat.2009.09.085

    Article  Google Scholar 

  16. 16.

    S. Gupta, M. Chakraborty, Z.V.P. Murthy, Sep. Purf. Technol. (2013). https://doi.org/10.1016/j.seppur.2013.04.020

    Article  Google Scholar 

  17. 17.

    S. Agarwal, M.T.A. Reis, M.R.C. Ismael, J.M.R. Carvalho, Sep. Purif. Technol. (2014). https://doi.org/10.1016/j.seppur.2014.02.039

    Article  Google Scholar 

  18. 18.

    S. Agarwal, M.T.A. Reis, M.R.C. Ismael, J.M.R. Carvalho, Sep. Purif. Technol. (2016). https://doi.org/10.1016/j.seppur.2016.03.031

    Article  Google Scholar 

  19. 19.

    M.T.A. Reis, M.R.C. Ismael, A. Wojciechowska, I. Wojciechowska, P. Aksamitowski, K. Wieszczycka, J.M.R. Carvalho, Sep. Purf. Technol. (2019). https://doi.org/10.1016/j.seppur.2019.04.076

    Article  Google Scholar 

  20. 20.

    F.J. Alguacil, M. Alonso, F.A. Lopez, A. Lopez-Delgado, I. Padilla, H. Tayibi, Chem. Eng. J. (2010). https://doi.org/10.1016/j.cej.2009.11.016

    Article  Google Scholar 

  21. 21.

    N.S. Rathore, A. Leopold, A.K. Pabby, A. Fortuny, M.T. Coll, A.M. Sastre, Hydrometallurgy (2009). https://doi.org/10.1016/j.hydromet.2008.08.009

    Article  Google Scholar 

  22. 22.

    P. Ramakul, T. Supajaroon, T. Prapasawat, U. Pancharoen, A.W. Lothongkum, J. Ind. Eng. Chem. (2009). https://doi.org/10.1016/j.jiec.2008.09.011

    Article  Google Scholar 

  23. 23.

    F.J. Alguacil, I. Garcia-Diaz, F. Lopez, A.M. Sastre, Sep. Purif. Technol. (2011). https://doi.org/10.1016/j.seppur.2011.05.029

    Article  Google Scholar 

  24. 24.

    L. Pei, L. Wang, W. Guo, N. Zhao, J. Membr. Sci. (2011). https://doi.org/10.1016/j.memsci.2011.05.037

    Article  Google Scholar 

  25. 25.

    S. Agarwal, M.T.A. Reis, M.R.C. Ismael, M.J.N. Correia, J.M.R. Carvalho, Sep. Purif. Technol. (2013). https://doi.org/10.1016/j.seppur.2012.09.026

    Article  Google Scholar 

  26. 26.

    F.J. Alguacil, I. Garcia-Diaz, F.A. Lopez, J. Ind. Eng. Chem. (2013). https://doi.org/10.1016/j.jiec.2012.12.003

    Article  Google Scholar 

  27. 27.

    A. Mondal, S. Ghosh, A. Bhowal, S. Datta, Sep. Sci. Technol. (2013). https://doi.org/10.1080/01496395.2012.723103

    Article  Google Scholar 

  28. 28.

    S. Chaturabul, W. Srirachat, T. Wannachod, P. Ramakul, U. Pancharoen, S. Kheawhom, Chem. Eng. J. (2015). https://doi.org/10.1016/j.cej.2014.12.034

    Article  Google Scholar 

  29. 29.

    R. Vijayalakshmi, S. Chaudhury, M. Anitha, D.K. Singh, S.K. Aggarwal, H. Singh, Int. J. Miner. Process. (2015). https://doi.org/10.1016/j.minpro.2015.02.003

    Article  Google Scholar 

  30. 30.

    S.A. Allahyari, S.J. Ahmadi, A. Minuchehr, A. Charkhi, RSC Adv. (2017). https://doi.org/10.1039/c6ra26463h

    Article  Google Scholar 

  31. 31.

    F.J. Alguacil, M. Alonso, F.A. Lopez, A. Lopez-Delgado, Sep. Purif. Technol. (2009). https://doi.org/10.1016/j.seppur.2009.01.012

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Smita Gupta or Mousumi Chakraborty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kohli, H.P., Gupta, S. & Chakraborty, M. Applicability of Hollow Fiber Strip Dispersion for the Removal of Metal Ions from Aqueous Streams. J. Inst. Eng. India Ser. E 101, 91–97 (2020). https://doi.org/10.1007/s40034-020-00163-4

Download citation

Keywords

  • Supported liquid membrane
  • Pseudo-emulsion hollow fiber strip dispersion
  • Metal ions
  • Permeability
  • Extraction