Synthesis, Characterization and Performance Evaluation of a Solid Acid Catalyst Prepared from Coconut Shell for Hydrolyzing Pretreated Acacia nilotica Heartwood

Abstract

The present investigation aims to develop a solid acid-type heterogeneous catalyst for the hydrolysis of biomass using coconut shell, an inexpensive and easily available material, as yet unexplored in this field. Catalyst characterization by scanning electron micrography, X-ray diffraction, FTIR spectroscopy and nitrogen adsorption has been carried out. Pretreated sawdust from Acacia nilotica heartwood and microcrystalline cellulose were hydrolyzed in aqueous medium using the developed catalyst. Maximum sugar yields of 91% and 93% were obtained on hydrolysis of pretreated sawdust and microcrystalline cellulose, respectively. The principal hydrolysis product was glucose with a selectivity of 98%. These results highlight the potential of the developed catalyst for use in industrial biomass saccharification.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

t:

Reaction temperature (°C)

c/b:

Catalyst/biomass ratio

References

  1. 1.

    S. Bhattacharya, S. Dutta, S. Datta, C. Bhattacharjee, J. Inst. Eng. India Ser. E 93(1), 37 (2012)

    Article  Google Scholar 

  2. 2.

    Z. Zhang, Z.K. Zhao, Carbohydr. Res. 344, 2069 (2009)

    Article  Google Scholar 

  3. 3.

    H. Cai, C. Li, A. Wang, G. Xu, T. Zhang, Appl. Catal. B 123–124, 333 (2012)

    Article  Google Scholar 

  4. 4.

    A. Takagaki, C. Tagusagawa, K. Domen, Chem. Commun. 42, 5363 (2008)

    Article  Google Scholar 

  5. 5.

    H. Kobayashi, T. Komanoya, K. Hara, A. Fukuoka, ChemSusChem 3, 440 (2010)

    Article  Google Scholar 

  6. 6.

    R. Rinaldi, R. Palkovits, F. Schüth, Agnew. Chem. Int. Ed. 47, 8047 (2008)

    Article  Google Scholar 

  7. 7.

    S. Kim, A. Dwiatmoko, J.W. Choi, Y. Suh, D.J. Suh, M. Oh, Bioresour. Technol. 101, 8273 (2010)

    Article  Google Scholar 

  8. 8.

    J. Hegner, K.C. Pereira, B. DeBoef, L.B. Lucht, Tetrahedron Lett. 51, 2356 (2010)

    Article  Google Scholar 

  9. 9.

    S. Saganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara, J. Am. Chem. Soc. 130, 12787 (2008)

    Article  Google Scholar 

  10. 10.

    M. Kitano, K. Arai, A. Kodama, T. Kousaka, K. Nakajima, S. Hayashi, M. Hara, Catal. Lett. 131, 242 (2009)

    Article  Google Scholar 

  11. 11.

    K. Shimizu, H. Furukawa, N. Kobayashi, Y. Itaya, A. Satsuma, Green Chem. 11, 1627 (2009)

    Article  Google Scholar 

  12. 12.

    J. Tian, J. Wang, S. Zhao, C. Jiang, X. Jhang, X. Wang, Cellulose 17, 587 (2010)

    Article  Google Scholar 

  13. 13.

    S. Van de Vyver, L. Peng, J. Geboers, H. Schepers, F. de Clippel, C.J. Gommes, B. Goderis, P.A. Jacobs, B.F. Sels, Green Chem. 12, 1560 (2010)

    Article  Google Scholar 

  14. 14.

    D. Lai, L. Deng, J. Li, B. Liao, Q. Guo, Y. Fu, ChemSusChem 4, 55 (2011)

    Article  Google Scholar 

  15. 15.

    A. Vu, R. Wickramasinghe, X. Qian, Ind. Eng. Chem. Res. 57, 4514 (2018)

    Article  Google Scholar 

  16. 16.

    Y.B. Huang, Y. Fu, Green Chem. 15, 1095 (2013)

    Article  Google Scholar 

  17. 17.

    M. Goswami, S. Meena, S. Navatha, K.N. Prasanna Rani, A. Pandey, R.K. Sukumaran, R.B.N. Prasad, B.L.A. Prabhavathi Devi, Biores. Technol. 188, 99 (2015)

    Article  Google Scholar 

  18. 18.

    X. Li, F. Shu, C. He, S. Liu, N. Leksawasdi, Q. Wang, W. Qi, MdA Alam, Z. Yuan, Y. Gao, RSC Adv. 8, 10922 (2018)

    Article  Google Scholar 

  19. 19.

    Y. Jiang, X. Li, X. Wang, L. Meng, H. Wang, G. Peng, X. Wang, X. Mu, Green Chem. 14, 2162 (2012)

    Article  Google Scholar 

  20. 20.

    W. Namchot, N. Panyacharay, W. Jonglertjunya, C. Sakdaronnarong, Fuel 116, 608 (2014)

    Article  Google Scholar 

  21. 21.

    A. Mallick, S.N. Ash, D.K. Mahapatra, J. Inst. Eng. India Ser. E 97(1), 39 (2016)

    Article  Google Scholar 

  22. 22.

    R. Child, S. Ramanathan, J. Am. Chem. Soc. 60(6), 1506 (1938)

    Article  Google Scholar 

  23. 23.

    D. Lee, Molecules 18, 8168 (2013)

    Article  Google Scholar 

  24. 24.

    G.I. Miller, Anal. Chem. 31(3), 426 (1959)

    Article  Google Scholar 

  25. 25.

    W. Qi, S.P. Zhang, Q.L. Xu, Z.W. Ren, Y.J. Yan, Chin. J. Process Eng. 8(6), 1132 (2008)

    Google Scholar 

  26. 26.

    Y.J. Liou, W.J. Huang, J. Mater. Sci. Technol. 29(5), 406 (2013)

    Article  Google Scholar 

  27. 27.

    P.D. Cara, M. Pagliaro, A. Bmekawy, D.R. Brown, P. Verschuren, N.R. Shiju, G. Rothenberg, Catal. Sci. Technol 3, 2057 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors express their heartfelt thanks to the laboratory assistants of the Department of Chemical Engineering, University of Calcutta, India, for their cooperation in carrying out the work. The authors also gratefully thank the SEM section of the Department of Metallurgical Engineering and Material Science, Jadavpur University, India, for their cooperation. The authors would also like to thank the Department of Polymer Science and Technology, University of Calcutta, for providing the facilities for XRD and FTIR. Last, but not the least, the authors would like to thank the authorities of the University of Calcutta, for providing the financial support for this research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abhyuday Mallick.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mallick, A., Mukhopadhyay, M. & Ash, S. Synthesis, Characterization and Performance Evaluation of a Solid Acid Catalyst Prepared from Coconut Shell for Hydrolyzing Pretreated Acacia nilotica Heartwood. J. Inst. Eng. India Ser. E 101, 69–76 (2020). https://doi.org/10.1007/s40034-019-00153-1

Download citation

Keywords

  • Lignocellulosic biomass
  • Biomass saccharification
  • Sulfonated activated carbon
  • Response surface analysis