Skip to main content
Log in

Functionalization, Uptake and Release Studies of Active Molecules Using Halloysite Nanocontainers

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series E Aims and scope Submit manuscript

Abstract

Halloysite nanotubes are inorganic clay minerals of kaolin group. Halloysite possess unique morphology, chemical composition, cation exchange capacity and charge properties making them ideal candidate for various industrial application. In the present study, an attempt was made to functionalize the exterior surface of halloysite nanocontainer. The surface of halloysite nanocontainer was modified using tetrabutylammonium chloride (TBAC). Further an attempt was made to employ these functionalized nanocontainers to uptake and release the active molecule (dye Acid Red1). TBAC-modified nanocontainer indicated higher adsorption capacity of 4.54 mg/g as compared to unmodified nanocontainer (3.08 mg/g). The release behaviour of active molecule from loaded nanocontainers was found with change in pH and temperature. Since the loading characteristics of functionalized nanocontainers were found to be adsorption dependent, parameters such as effect of time, loading, pH, initial concentration were studied for analysing the loading characteristics. The dye release from 0.5 g dye-loaded TBAC-modified nanocontainers at pH 11 and at 32 °C was found to be 92%. Lastly, the release readings were analysed for the best fit (97%) using permeation kinetic model (Peppa’s model).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

AR:

Acid Red 1 (dye)

CH3COOH:

Acetic acid

CH3COONa:

Sodium acetate

DI:

Deionized water

HCl:

Hydrochloric acid

HDTMA:

Hexadecyltrimethylammonium bromide

HNT:

Halloysite nanotubes

Na2HPO4 :

Disodium hydrogen phosphate

NaCl:

Sodium chloride

NaH2PO4 :

Monosodium phosphate

TBAC:

Tetrabutylammonium chloride

C 0 :

Initial solution concentration in ppm

C e :

Solution concentration at equilibrium in ppm

C ed :

Equilibrium concentration of the dye in the solution in (mg/L)

k ad1 :

Rate constant of pseudo-first-order adsorption (min−1)

k ad2 :

Rate constant of pseudo-second-order adsorption (g mg−1 min−1)

K f and n :

Physical constants of the Freundlich adsorption isotherm

k t :

Release rate constant

M :

Mass of nanocontainers in g

n :

Release exponent indicating transport mechanism

q 0 :

Amount of dye release in the solution at time t = 0

q e :

Amount of adsorbed dye on the adsorbent surface in (mg/g) at equilibrium

q t :

Amount of dye release in the solution at time t

Q max :

Maximum adsorption capacity (mg/g)

Q t :

Amount of dye release in given time

V :

Volume of solution in litre

β :

Signifies the constant related to the energy of adsorption

References

  1. A.G. Skirtach, O. Kreft, Stimuli sensitive nanotechnology for drug delivery, in Nanotechnology in drug delivery, vol. 10, ed. by M.M. Devilliers, et al. (Springer, New York, 2009), pp. 545–578

    Chapter  Google Scholar 

  2. S.M. Moghimi, A.C. Hunter, J.C. Murray, Nanomedicine: current status and future prospects. J. Fed. Amer. Soc. Exp. Biol. 19, 311–330 (2005)

    Google Scholar 

  3. D. Borisova, H. Mohwald, D. Shchukin, Influence of embedded nanocontainers on the efficiency of active anticorrosive coatings for aluminum alloys part I: influence of nanocontainer concentration. Appl. Mater. Interfaces 4, 2931–2939 (2012)

    Article  Google Scholar 

  4. S.A. Ghodke, S.H. Sonawane, B.A. Bhanvase, S. Mishra, K.S. Joshi, Studies on fragrance delivery from inorganic nanocontainers: encapsulation, release and modeling studies. J. Inst. Eng. India Ser. E 96(1), 45–53 (2015)

    Article  Google Scholar 

  5. M. Zhou, T.S.H. Leong, S. Melino, F. Cavalieri, M. Ashokkumar, S. Kentish, Sonochemical synthesis of liquid-encapsulated lysozyme microspheres. Ultrason. Sonochem. 17, 333–337 (2010)

    Article  Google Scholar 

  6. A. Kumar, L.D. Stephenson, J.N. Murray, Self-healing coatings for steel. Prog. Org. Coat. 55, 244–253 (2006)

    Article  Google Scholar 

  7. S.H. Sonawane, B.A. Bhanvase, A.A. Jamali, S.K. Dubey, S.S. Kale, D.V. Pinjari, A.B. Pandit, Improved active anticorrosion coatings using layer-by-layer assembled ZnO nanocontainers with benzotriazole. Chem. Eng. J. 189–190, 464–472 (2012)

    Article  Google Scholar 

  8. D. Quintanar, E. Allémann, H. Fessi, E. Doelker, Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev. Ind. Pharm. 24, 1113–1128 (1998)

    Article  Google Scholar 

  9. C.E. Mora-Huertas, H. Fessi, A. Elaissari, Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 385, 113–142 (2010)

    Article  Google Scholar 

  10. E. Fleige, M.A. Quadir, R. Haag, Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv. Drug Del. Rev. 64, 866–884 (2012)

    Article  Google Scholar 

  11. G.V. Joshi, B.D. Kevadiya, H.C. Bajaj, Design and evaluation of controlled drug delivery system of buspirone using inorganic layered clay mineral. Micropor. Mesopor. Mater. 132(3), 526–530 (2010)

    Article  Google Scholar 

  12. Z. Zhong Zhang, D.L. Sparks, N.C. Scrivner, Sorptlon and desorption of quaternary amine cations on clays. Environ. Sci. Technol. 27, 1625–1631 (1993)

    Article  Google Scholar 

  13. M.G. Apps, A.J. Ammit, A. Gu, N.J. Wheate, Analysis of montmorillonite clay as a vehicle in platinum anticancer drug delivery. Inorg. Chimica. Acta. 421, 513–518 (2014)

    Article  Google Scholar 

  14. S.A. Boyd, M.M. Mortland, C.T. Chiou, Sorption characteristic of organic compounds on hexadecyltrimethylammonium-smectite. Soil Sci. Soc. Am. J. 52, 652–657 (1998)

    Article  Google Scholar 

  15. S.H. Sonawane, P.L. Chaudhari, S.A. Ghodke, S. Ambade, A. Mirikar, A. Bane, S. Gulig, Combined effect of ultrasound and nanoclay on adsorption of phenol. Ultrason. Sonochem. 15, 1033–1037 (2008)

    Article  Google Scholar 

  16. M.I. Carretero, M. Pozo, Clay and non-clay minerals in the pharmaceutical and cosmetic industries. Part II Active ingredients. Appl. Clay. Sci. 47, 171–181 (2010)

    Article  Google Scholar 

  17. C. Vettori, D. Paffetti, G. Pieramellara, E. Stotzky, E. Gallori, Amplification of bacterial DNA bound on clay minerals by random amplified polymorphic DNA (RAPD) technique. FEMS Microbiol. Ecol. 20, 251–260 (1996)

    Article  Google Scholar 

  18. M.A. Osman, M. Ploetze, U.W. Suter, Surface treatment of clay minerals thermal stability, basal-plane spacing and surface coverage. J. Mater. Chem. 13(9), 2359–2366 (2003)

    Article  Google Scholar 

  19. H.Y. Wei, N. Li, D.S. Tong, C.H. Zhou, C.X. Lin, C.Y. Xu, Adsorption of proteins and nucleic acids on clay minerals and their interactions: a review. Appl. Clay Sci. 80–81, 443–452 (2013)

    Google Scholar 

  20. E. Abdullayev, R. Price, D. Shchukin, Y. Lvov, Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole. Appl. Mater. Interf. 1(7), 1437–1443 (2009)

    Article  Google Scholar 

  21. V. Vergaro, Y.M. Lvov, S. Leporatti, Halloysite clay nanotubes for resveratrol delivery to cancer cells. Macromol. Biosci. 12(9), 1265–1271 (2012)

    Article  Google Scholar 

  22. H. Hemmatpour, V. Haddadi-Asl, H. Roghani-Mamaqani, Synthesis of pH-sensitive poly (N, N-dimethylaminoethyl methacrylate)-grafted halloysite nanotubes for adsorption and controlled release of DPH and DS drugs. Polymer 65, 143–153 (2015)

    Article  Google Scholar 

  23. E. Joussein, S. Petit, J. Churchman, B. Delvaux, B. Theng, D. Righi, Halloysite clay minerals—a review. Clay Miner. 40, 383–426 (2005)

    Article  Google Scholar 

  24. E. Abdullayev, Y. Lvov, Clay nanotubes for corrosion inhibitor encapsulation: release control with end stoppers. J. Mater. Chem. 20, 6681–6687 (2010)

    Article  Google Scholar 

  25. Y.M. Lvov, D.G. Shchukin, H. Mohwald, R.R. Price, Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2(5), 814–820 (2008)

    Article  Google Scholar 

  26. S.R. Levis, P.B. Deasy, Characterisation of halloysite for use as a microtubular drug delivery system. Int. J. Pharm. 243, 125–134 (2002)

    Article  Google Scholar 

  27. Q. Wang, J. Zhang, A. Wang, Alkali activation of halloysite for adsorption and release of ofloxacin, Alkali activation of halloysite for adsorption and release of ofloxacin. Appl. Surf. Sci. 287, 54–61 (2013)

    Article  Google Scholar 

  28. A. Zhang, L. Pan, H. Zhang, S. Liu, Y. Ye, M. Xia, X. Chen, Effects of acid treatment on the physico-chemical and pore characteristics of halloysite. Colloids Surf. B 396, 182–188 (2012)

    Article  Google Scholar 

  29. E. Abdullayev, A. Joshi, W. Wei, Y. Zhao, Y. Lvov, Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 6(8), 7216–7226 (2012)

    Article  Google Scholar 

  30. W.O. Yah, A. Takahara, Y.M. Lvov, Selective modification of halloysite lumen with octadecyl phosphonic acid: new inorganic tubular micelle. Am. Chem. Soc. 134, 1853–1859 (2012)

    Article  Google Scholar 

  31. E. Horvath, J. Kristof, R. Kurdi, E. Mako, V. Khunova, Study of urea intercalation into halloysite by thermoanalytical and spectroscopic techniques. J. Therm. Anal. Calorim. 105, 53–59 (2011)

    Article  Google Scholar 

  32. P. Yuan, S.J. Antill, P.D. Southon, Z. Liu, C.J. Kepert, M.E.R. Green, J.M. Hook, Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J. Phys. Chem. C 112, 15742–15751 (2008)

    Article  Google Scholar 

  33. W. Jinhua, Z. Xiang, Z. Bing, Z. Yafei, Z. Rui, L. Jindun, C. Rongfeng, Rapid adsorption of Cr(VI) on modified halloysite nanotubes. Desalination 259, 22–28 (2010)

    Article  Google Scholar 

  34. M.M. Mortland, S. Shaobai, S.A. Boyd, Clay-organic complexes as adsorbents for phenol and chlorophenols. Clays Clay Miner. 34(5), 581–585 (1986)

    Article  Google Scholar 

  35. I.M.C. Lo, R.K.M. Mak, S.C.H. Lee, Modified clays for waste containment and pollutant attenuation. J. Environ. Eng. 123(1), 25–32 (1997)

    Article  Google Scholar 

  36. P. Luo, Y. Zhao, B. Zhang, J. Liu, Y. Yang, J. Liu, Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Res. 44, 1489–1497 (2010)

    Article  Google Scholar 

  37. K.P. Nicolini, C.R. Fukamachi, F. Wypych, A.S. Mangrich, Dehydrated halloysite intercalated mechanochemically with urea: thermal behavior and structural aspects. J. Colloid Interface Sci. 338, 474–479 (2009)

    Article  Google Scholar 

  38. Q. He, D. Yang, X. Deng, Q. Wu, R. Li, Y. Zhai, L. Zhang, Preparation, characterization and application of N-2-Pyridylsuccinamic acid-functionalized halloysite nanotubes for solid-phase extraction of Pb(II). Water Res. 47, 3976–3983 (2013)

    Article  Google Scholar 

  39. S. Lagergren, About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetensk Handl. 24, 1–39 (1898)

    Google Scholar 

  40. Y. Zhao, B. Zhang, X. Zhang, J. Wang, J. Liu, R. Chen, Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions. J. Hazard. Mater. 178(1–3), 658–664 (2010)

    Article  Google Scholar 

  41. S. Rangabhashiyam, N. Selvaraju, Efficacy of unmodified and chemically modified Swietenia mahagoni shells for the removal of hexavalent chromium from simulated wastewater. J. Mol. Liq. 209, 487–497 (2015)

    Article  Google Scholar 

  42. E. Nakkeeran, S. Rangabhashiyam, M.S. Giri Nandagopal, N. Selvaraju, Removal of Cr(VI) from aqueous solution using Strychnos nux-vomica shell as an adsorbent. Desalin. Water Treat. 57(50), 23951–23964 (2016)

    Article  Google Scholar 

  43. S. Rangabhashiyam, M.S. Giri Nandagopal, E. Nakkeeran, N. Selvaraju, Adsorption of hexavalent chromium from synthetic and electroplating effluent on chemically modified Swietenia mahagoni shell in a packed bed column. J. Environ. Monitor. 188(7), 1–13 (2016)

    Google Scholar 

  44. F. Kiani, M. Dostali, A. Rostami, A.R. Khataee, Adsorption studies on the removal of Malachite Green from aqueous solutions onto halloysite nanotubes. Appl. Clay Sci. 54, 34–39 (2011)

    Google Scholar 

  45. G. Crini, H.N. Peindy, Adsorption of CI Basic Blue 9 on cyclodextrin-based material containing carboxylic groups. Dyes Pigm. 70, 204–211 (2006)

    Article  Google Scholar 

  46. S. Rangabhashiyam, E. Nakkeeran, N. Anu, N. Selvaraju, Biosorption potentials of a novel Ficus auriculata leaves powder for the sequestration of hexavalent chromium from aqueous solutions. Res. Chem. Intermed. 41(11), 8405–8424 (2015)

    Article  Google Scholar 

  47. E. Nakkeeran, N. Saranya, M.S. Giri Nandagopal, A. Santhiagu, N. Selvaraju, Hexavalent chromium removal from aqueous solutions by a novel powder prepared from Colocasia esculenta leaves. Int. J. Phytoremediation. 18(8), 812–821 (2016)

    Article  Google Scholar 

  48. S. Li, Removal of crystal violet from aqueous solution by sorption into semi interpenetrated networks hydrogels constituted of poly(acrylic acid-acrylamide methacylate) and amylase. Bioresour. Technol. 101, 2197–2202 (2010)

    Article  Google Scholar 

  49. N. Emad, J. Qada, G. Stephen, Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: a study of equilibrium adsorption isotherm. Chem. Eng. J. 124, 103–110 (2006)

    Article  Google Scholar 

  50. V.N. Ravella, R.R. Nadendla, N.C. Kesari, Design and evaluation of sustained release pellets of aceclofenac. J. Pharm. Res. 6, 525–531 (2013)

    Google Scholar 

  51. P. Costa, J.M.S. Lobo, Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 13, 123–133 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirish Hari Sonawane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghodke, S.A., Sonawane, S.H., Bhanvase, B.A. et al. Functionalization, Uptake and Release Studies of Active Molecules Using Halloysite Nanocontainers. J. Inst. Eng. India Ser. E 100, 59–70 (2019). https://doi.org/10.1007/s40034-019-00140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40034-019-00140-6

Keywords

Navigation