Skip to main content
Log in

The Anaerobic Digestion of Waste Food Materials by Using Cow Dung: A New Methodology to Produce Biogas

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series E Aims and scope Submit manuscript

Abstract

From kitchen and dining place lots of food wastes are generated and these create many problems if these are disposed directly by dumping. Instead of dumping, the aforesaid wastes can be utilized in a better way to produce valuable products such as biogas. In the open literature, different methodologies of digestion by using bacteria or microorganisms have been described. The use of bacteria or microorganism increases the cost of conversion. However, the literature does not disclose any information on the process which describes the digestion of the food waste without the use of microorganism directly. Hence, in the current work, an attempt has been made to digest food waste and to produce biogas by using a novel technique which does not use the bacteria directly. In the current work, nourishment waste was gathered from various messes of National Institute of Technology Rourkela and these were given as the feedstock to our reactor which functions as an anaerobic digester framework to deliver biogas. For the production of biogas, food waste was mixed with cow dung at different ratios and the cow dung acts as an inoculum in the current case as it contains both methanogenic and acid-forming bacteria. By using a gas analyzer, after experimentation, the composition of the gas was analyzed and the achieved composition confirms that the obtained gas is the biogas. The result shows that the rate of biogas production is influenced by the pH, temperature and solid-to-water ratio. The biogas production rate is found to be maximum at an intermediate solid-to-water ratio of 1:2 and at the neutral range of pH. Furthermore, the biogas production rate increases from 110 to 142 ml with the rising temperature from 25 to 40 °C, and with the further increment in temperature, the methane production rate declines. In addition to the above, the process behavior at different conditions has been modeled by using response surface methodology technique and also the optimum conditions (T = 44.03 °C, R = 0.44 and pH 7.02) for the maximum production of biogas has been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

S :

Amount of solid (kg)

W :

Amount of water (kg)

S/W :

Solid-to-water ratio

T :

Temperature of mixture (°C)

V :

Volume of methane produced (ml)

R 2 :

Regression coefficient

SD:

Standard deviation

R :

Solid–water ratio (w/w)

TS:

Total solid (g)

TVS:

Total volatile solid (g)

COD:

Chemical oxygen demand

C/N:

Carbon-to-nitrogen ratio

df :

Degree of freedom

Cor total:

Corrected total

References

  1. D. Palaniswamy, Experimental investigation of biogas production from food waste and analysis for the waste energy recovery and utilization from institutions of state of Tamil Nadu in India, in Intelligent Systems and Control (ISCO), IEEE, Tamilnadu, India (2013)

  2. H. Chanakya, S. Malayil, Anaerobic digestion for bioenergy from agro residues and other solid wastes—an overview of science, technology and sustainability. J. Indian Inst. Sci. 92, 111 (2012)

    Google Scholar 

  3. T.F. Otun, O.M. Ojo, F.O. Ajibade, J.O. Babatola, Evaluation of biogas production from the digestion and codigestion of animal waste, food waste and fruit waste. Int. J. Energy Environ. Res. 3, 12 (2015)

    Google Scholar 

  4. L. Appels, J. Baeyens, J. Degreve, R. Dewil, Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 34, 755 (2008)

    Article  Google Scholar 

  5. D. Shivaraj, G. Seenayya, Biogas production from various poultry droppings slurry concentration. India J. Environ. Health 36, 115 (1994)

    Google Scholar 

  6. P. Sahota, A. Singh, Res. Dev. 13, 35–40 (1996)

    Google Scholar 

  7. B. Nagamani, K. Ramasamy, 31st Annual Conference of Association of Microbiologists of India held at Tamil Nadu Agricultural University, Coimbatore, pp. 102 (1991)

  8. X. Wang, X. Lu, F. Li, G. Yang, Effects of temperature and carbon–nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: focusing on ammonia inhibition. Li W, ed. PLoS ONE 9, 5 (2014)

    Google Scholar 

  9. H.M. El-Mashad, R.H. Zhang, Biogas production from co-digestion of dairy manure and food waste. Biores. Technol. 101, 4021 (2010)

    Article  Google Scholar 

  10. K. Hanaki, M. Nagase, T. Matsuo, Mechanism of inhibition caused by long-chain fatty acids in anaerobic digestion process. Biotechnol. Bioeng. 23, 1591 (1981)

    Article  Google Scholar 

  11. H. Hartmann, I. Angelidaki, B.K. Ahring, Co-digestion of the organic fraction of municipal solid waste with other waste types, in Biomethanisation of the Organic Fraction of Municipal Solid Wastes (IWA Publishing Company, Amsterdam, 2003), p. 181

  12. M. Hatamoto, H. Imachi, Y. Yashiro, A. Ohashi, H. Harada, Identification and cultivation of anaerobic, syntrophic long-chain fatty acid-degrading microbes from mesophilic and thermophilic methanogenic sludge. Appl. Environ. Microbiol. 73, 4119 (2007)

    Article  Google Scholar 

  13. G.F. Huang, J.W.C. Wong, Q.T. Wu, B.B. Nagar, Effect of C/N on composting of pig manure with sawdust. Waste Manag 24, 805 (2004)

    Article  Google Scholar 

  14. J.R.S. Ventura, J. Lee, D. Jahng, A comparative study on the alternating mesophilic and thermophilic two-stage anaerobic digestion of food waste. J. Environ. Sci. 26, 1274 (2014)

    Article  Google Scholar 

  15. C. Zhang, G. Xiao, L. Peng, H. Su, T. Tan, The anaerobic digestion of food waste and cattle manure. Biores. Technol. 129, 170 (2013)

    Article  Google Scholar 

  16. S. Vij, Biogas production from kitchen waste & to test the Quality and Quantity of biogas produced from kitchen waste under suitable conditions. e-thesis, NIT Rourkela, India (2011)

  17. M.A. Sanz-Bobi, F. de Cuadra, C. Batlle, A review of key points of an industrial biogas plant, in A European Perspective, Renewable Energy Research and Applications (ICRERA), IEEE, Nagasaki, Japan, pp. 1–6 (2012)

  18. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76, 965 (2008)

    Article  Google Scholar 

  19. S.L.C. Ferreira, R.E. Bruns, E.G.P. da Silva, Statistical designs and response surface techniques for the optimization of chromatographic systems. J. Chromatogr. A 1158, 2 (2007)

    Article  Google Scholar 

  20. B. Bhunia, A. Dey, Statistical approach for optimization of physiochemical requirements on alkaline protease production from Bacillus licheniformis NCIM-204, Enzyme Research, 905804 (2012)

  21. D. Vikrant, P. Shekhar, Generation of biogas from kitchen waste—experimental analysis. Int. J. Eng. Sci. Invent. 2(10), 15 (2013)

    Google Scholar 

  22. L. Louis, Working principle of Arduino and using it as a tool for study and research. Int. J. Control Autom. Commun. Syst. 1(2), 21 (2016)

    Google Scholar 

  23. B. Bhunia, D. Dutta, S. Chaudhuri, Optimization of enzyme activity determination and partial characterization of extracellular alkaline protease from Bacillus licheniformis NCIM-2042. Eng. Life Sci. 11, 207 (2011)

    Article  Google Scholar 

  24. U.S.P. Uday, P. Choudhury, T.K. Bandyopadhyay, B. Bhunia, Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. Int. J. Biol. Macromol. 82, 1041 (2016)

    Article  Google Scholar 

  25. G.E.P. Box, D.W. Behnke, Some new three level second order designs for surface fitting, in Statistical Technique Research Group Technical Report 26, Princeton University (1958)

  26. G.E.P. Box, D.W. Behnke, Some new three level designs for the study of quantitative variables. Technometrics 2, 455 (1960)

    Article  MathSciNet  Google Scholar 

  27. G.E.P. Box, N.R. Draper, Empirical Model Building and Response Surface (Wiley, New York, 1987)

    MATH  Google Scholar 

  28. R.H. Myers, D.C. Montogomery, C.M.A. Cook, Response Surface Methodology: Process and Product Optimization by Using Designed Experimentation, 3rd edn. (Wiley, New York, 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Mohapatra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pati, A.R., Saroha, S., Behera, A.P. et al. The Anaerobic Digestion of Waste Food Materials by Using Cow Dung: A New Methodology to Produce Biogas. J. Inst. Eng. India Ser. E 100, 111–120 (2019). https://doi.org/10.1007/s40034-019-00134-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40034-019-00134-4

Keywords

Navigation