Skip to main content
Log in

Synthesis and Characterization of Oleic Acid-Capped Metallic Copper Nanoparticle via Chemical Reduction Method

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series E Aims and scope Submit manuscript

Abstract

Copper nanoparticles were synthesized from copper chloride precursor using sodium formaldehyde sulfoxylate as the reducing agent. Oleic acid was used as the capping agent. Surfactants like polyvinyl alcohol/polyvinyl pyrrolidone were used to avoid the oxide formation and to prevent the agglomeration. Use of polyvinyl pyrrolidone resulted in better-quality samples. X-ray diffraction studies showed that the crystallite size of the particles decreased with an increase in the reaction temperature. Energy-dispersive X-ray spectroscopy analysis for the samples synthesized at various temperatures showed a lower degree of oxidation at higher reaction temperatures. Particles of uniform shape were obtained at higher reducing agent concentration. Transmission electron microscopy studies showed the formation of spherical particles between 10 and 30 nm diameter. Results from selective area diffraction pattern confirm the formation of copper nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I. Khan, K. Saeed, I. Khan, Arab. J. Chem. (2017) Accepted

  2. S. Chandra, A. Kumar, P.K. Tomar, J. Saudi Chem. Soc. 18, 149 (2014)

    Article  Google Scholar 

  3. K.-Y. Yoon, J.H. Byeon, J.-H. Park, J. Hwang, Sci. Total Environ. 373, 572 (2007)

    Article  Google Scholar 

  4. P. Kanhed, S. Birla, S. Gaikwad, A. Gade, A.B. Seabra, O. Rubilar, N. Duran, M. Rai, Mater. Lett. 115, 13 (2014)

    Article  Google Scholar 

  5. M. Salavati-Nisari, N. Mir, F. Davar, Appl. Surf. Sci. 256, 4003 (2010)

    Article  Google Scholar 

  6. M. Salavati-Niasari, F. Davar, N. Mir, Polyhedron 27, 3514 (2008)

    Article  Google Scholar 

  7. R.K. Nekouei, F. Rashchi, A. Ravanbakhsh, Powder Technol. 250, 91 (2013)

    Article  Google Scholar 

  8. P.K. Khanna, S. Gaikwad, P.V. Adhyapak, N. Singh, R. Marimuthu, Mater. Lett. 61, 4711 (2007)

    Article  Google Scholar 

  9. S. Wu, Mater. Lett. 61, 1125 (2007)

    Article  Google Scholar 

  10. B.-K. Park, S. Jeong, D. Kim, J. Moon, S. Lim, J.S. Kim, J. Colloids Interface Sci. 311, 417 (2007)

    Article  Google Scholar 

  11. L. Qi, J. Ma, J. Shen, J. Colloids Interface Sci. 186, 498 (1997)

    Article  Google Scholar 

  12. G. Lee, C. Kyu, M. Ku, C. Kyu, Powder Technol. 261, 143 (2014)

    Article  Google Scholar 

  13. C. Dong, H. Cai, X. Zhang, C. Caomacacia, Phys. E Low-Dimens. Syst. Nanostruct. 57, 12 (2014)

    Article  Google Scholar 

  14. M.I.S. Biçer, Powder Technol. 198, 279 (2010)

    Article  Google Scholar 

  15. Z. Qiu-li, Y. Zhi-Mao, D. Bing-Jun, Trans. Nonferrous Met. Soc. China 20, s240 (2009)

    Google Scholar 

  16. J. Wen, J. Li, S. Liu, Q. Chen, Colloids Surf. A Physicochem. Eng. Asp. 373, 29 (2011)

    Article  Google Scholar 

  17. M. Faraji, R. Poursalehi, M. Aliofkhazraei, Proc. Mater. Sci. 11, 684 (2015)

    Article  Google Scholar 

  18. M.B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S. Varma, Chem. Rev. 116, 3722 (2016)

    Article  Google Scholar 

  19. F.N. Sayed, V. Polshettiwar, Sci. Rep. 5, 09733 (2015)

    Article  Google Scholar 

  20. L. Ernawati, R. Balgis, T. Ogi, K. Okuyama, T. Takada, Chem. Process Eng. 38(1), 5 (2017)

    Article  Google Scholar 

  21. V.D. Cao, N.Q. Tran, T.P.P. Nguyen, J. Exp. Nanosci. 10(8), 576 (2015)

    Article  Google Scholar 

  22. Y. Zhai, M. Shim, Chem. Mater. 29(5), 2390 (2017)

    Article  Google Scholar 

  23. M.P. Pileni, Nat. Mater. 2, 145 (2003)

    Article  Google Scholar 

  24. A. Habib, N. Stelzer, P. Angerer, R. Haubner, Bull. Mater. Sci. 34(1), 19 (2011)

    Article  Google Scholar 

  25. M. Kumari, A. Mishra, S. Pandey, S.P. Singh, V. Chaudhry, M.K.R. Mudiam, S. Shukla, P. Kakkar, C.S. Nautiyal, Sci. Rep. 6, 27575 (2016)

    Article  Google Scholar 

  26. G. Suriati, M. Mariatti, A. Azizan, Int. J. Automot. Mech. Eng. 10, 1920 (2014)

    Article  Google Scholar 

  27. S.M. Pawar, J. Kim, A.I. Inamdar, H. Woo, Y. Jo, B.S. Pawar, S. Cho, H. Kim, H. Im, Sci. Rep. 6, 21310 (2016)

    Article  Google Scholar 

  28. L.Q. Pham, J.H. Sohn, C.W. Kim, J.H. Park, H.S. Kang, B.C. Lee, Y.S. Kang, J. Colloid Interface Sci. 365, 103 (2012)

    Article  Google Scholar 

  29. T. Theivasanthi, M. Alagar, J. Phys. Sci. 6, 3662 (2011)

    Google Scholar 

  30. H.J. Lee, J.Y. Song, B.S. Kim, J. Chem. Technol. Biotechnol. 88, 1971 (2013)

    Google Scholar 

  31. S.R. Kodigala, Thin Film Solar Cells from Earth Abundant Materials (Elsevier, London, 2014)

    Google Scholar 

Download references

Acknowledgements

We thank the Department of Chemical Engineering IIT Madras for their support to carry out the particle size distribution analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Manivannan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arif, Z., Soni, A.B., Victoria, S.N. et al. Synthesis and Characterization of Oleic Acid-Capped Metallic Copper Nanoparticle via Chemical Reduction Method. J. Inst. Eng. India Ser. E 100, 101–109 (2019). https://doi.org/10.1007/s40034-019-00132-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40034-019-00132-6

Keywords

Navigation