Analysis of Mine Haul Road Performance Using Artificial Neural Network

Abstract

In an opencast mine, several hundred tonnes are regularly carried by haul roads. Thus, mine haul road plays an important role for the transportation. Consequently, at every stage of the mining process, prediction of the performance of haul road is utmost essential. The mine haul road performance is analyzed during designing of a road for new mines and extending or maintenance of an existing haul road. Speed of vehicle movement, fuel cost of the truck and dust emission rate are the three attributes that define the performance of a haul road. This paper shows a novel ANN regression model to divine the values of these three attributes. The proposed ANN regression model is designed with eight input variables/attributes. The paper also presents the theoretical and statistical justifications of choosing these eight input variables. Extensive experiments are carried out by collecting the data from two study areas. The proposed regression model is compared with linear and quadratic regression approaches. The tenfold cross-validation results show the superiority of ANN model over competing models.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Source: Baek and Choi [18]

Fig. 4
Fig. 5

Source of figure: Tannant and Regensburg [3]

Fig. 6

Figure taken from Thompson and Visser [10]

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Notes

  1. 1.

    https://www.ibm.com/products/spss-statistics accessed as on Sept. 2019.

References

  1. 1.

    S. Yadav, Singh Kumar (Ali, Design of Surface Mine Haul Road, 2016)

  2. 2.

    R. Thompson, A. Visser, Selection and maintenance of mine haul road wearing course materials. Mining Technol. 115(4), 140–153 (2006)

    Article  Google Scholar 

  3. 3.

    D. Tannant, B. Regensburg, Guidelines for mine haul road design (2001)

  4. 4.

    A.J. Kean, R.F. Sawyer, R.A. Harley, A fuel-based assessment of off-road diesel engine emissions. J. Air Waste Manag. Assoc. 50(11), 1929–1939 (2000)

    Article  Google Scholar 

  5. 5.

    S. Sundin, C. Braban-Ledoux, Artificial intelligence-based decision support technologies in pavement management. Comput.-Aided Civil Infrastr. Eng. 16(2), 143–157 (2001)

    Article  Google Scholar 

  6. 6.

    B. Lal, S.S. Tripathy, Prediction of dust concentration in open cast coal mine using artificial neural network. Atmos. Pollut. Res. 3(2), 211–218 (2012)

    Article  Google Scholar 

  7. 7.

    E. Siami-Irdemoosa, S.R. Dindarloo, Prediction of fuel consumption of mining dump trucks: a neural networks approach. Appl. Energy 151, 77–84 (2015)

    Article  Google Scholar 

  8. 8.

    W. Hustrulid, M. Kuchta, R. Martin, Open Pit Mine Planning and Design, Volume 1: Fundamentals, vol. 6000 (CRC Press Taylor & Francis Group, 2006), pp. 33487–2742

  9. 9.

    S. Sinha, S. Banerjee, Characterization of haul road dust in an Indian opencast iron ore mine. Atmos. Environ. 31(17), 2809–2814 (1997)

    Article  Google Scholar 

  10. 10.

    R. Thompson, A. Visser, An overview of the structural design of mine haulage roads. J. South Afr. Inst. Min. Metall. 96(1), 29–37 (1995)

    Google Scholar 

  11. 11.

    R. Thompson, A. Visser, R. Miller, T. Lowe, Development of real-time mine road maintenance management system using haul truck and road vibration signature analysis. Transp. Res. Rec. 1819(1), 305–312 (2003)

    Article  Google Scholar 

  12. 12.

    D. Hugo, et al., Haul road defect identification and condition assessment using measured truck response. PhD thesis, University of Pretoria (2005)

  13. 13.

    O. Williamson, Haul road design for off highway mining equipment subject to very high wheel loads, in Australian Road Research Board (ARRB) Conference, 13th, 1986, Adelaide. Australia vol. 13 (1986)

  14. 14.

    P. Holman, I. St Charles, Caterpillar® Haul Road Design and Management (Big Iron University, St Charles, IL, 2006)

  15. 15.

    A. Soofastaei, Development of an advanced data analytics model to improve the energy efficiency of haul trucks in surface mines (2016)

  16. 16.

    K.A. Kubler, Optimisation of off-highway truck fuel consumption through mine haul road design (2015)

  17. 17.

    S. Chaulya, M. Ahmad, R. Singh, L. Bandopadhyay, C. Bondyopadhay, G. Mondal, Validation of two air quality models for Indian mining conditions. Environ. Monit. Assess. 82(1), 23–43 (2003)

    Article  Google Scholar 

  18. 18.

    J. Baek, Y. Choi, A new method for haul road design in open-pit mines to support efficient truck haulage operations. Appl. Sci. 7(7), 747 (2017)

    Article  Google Scholar 

  19. 19.

    SP30 I, Manual on economic evaluation of highway projects in india. Indian Roads Congress (2009)

  20. 20.

    H. Pankrath, M. Barthel, A. Knut, M. Bracciale, R. Thiele, Dynamic soil compaction-recent methods and research tools for innovative heavy equipment approaches. Procedia Eng. 125, 390–396 (2015)

    Article  Google Scholar 

  21. 21.

    W.W. Kaufman, et al., Design of surface mine haulage roads: a manual (1978)

  22. 22.

    J.C. Pais, S.I. Amorim, M.J. Minhoto, Impact of traffic overload on road pavement performance. J. Transp. Eng. 139(9), 873–879 (2013)

    Article  Google Scholar 

  23. 23.

    R. Blab, J. Litzka, Measurements of the lateral distribution of heavy vehicles and its effects on the design of road pavements, in Proceedings of the International Symposium on Heavy Vehicle Weights and Dimensions (University of Michigan, Road Transport Technology, 1995), pp. 389–395

  24. 24.

    S. Zaghloul, T. White, Guidelines for permitting overloads-part i: effect of overloaded vehicles on the indiana highway network (1994)

  25. 25.

    A. Highway, T. Officials, Aashto guide for design of pavement structures 1993 (1993)

  26. 26.

    Ö. Kişi, Streamflow forecasting using different artificial neural network algorithms. J. Hydrol. Eng. 12(5), 532–539 (2007)

    Article  Google Scholar 

  27. 27.

    M. Rezaeianzadeh, H. Tabari, A.A. Yazdi, S. Isik, L. Kalin, Flood flow forecasting using ann, anfis and regression models. Neural Comput. Appl. 25(1), 25–37 (2014)

    Article  Google Scholar 

  28. 28.

    C.W. Dawson, R. Wilby, An artificial neural network approach to rainfall-runoff modelling. Hydrol. Sci. J. 43(1), 47–66 (1998)

    Article  Google Scholar 

  29. 29.

    B. Santra, A. Paul, D.P. Mukherjee, Deterministic dropout for deep neural networks using composite random forest. Pattern Recogn. Lett. 131, 205–212 (2020)

    Article  Google Scholar 

  30. 30.

    H.R. Maier, G.C. Dandy, The effect of internal parameters and geometry on the performance of back-propagation neural networks: an empirical study. Environ. Modell. Softw. 13(2), 193–209 (1998)

    Article  Google Scholar 

  31. 31.

    H. Yonaba, F. Anctil, V. Fortin, Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting. J. Hydrol. Eng. 15(4), 275–283 (2010)

    Article  Google Scholar 

  32. 32.

    M.R. Zadeh, S. Amin, D. Khalili, V.P. Singh, Daily outflow prediction by multi layer perceptron with logistic sigmoid and tangent sigmoid activation functions. Water Resour. Manage 24(11), 2673–2688 (2010)

    Article  Google Scholar 

  33. 33.

    H. Yu, B.M. Wilamowski, Levenberg–marquardt training. Ind. Electron. Handbook 5(12), 1 (2011)

    Google Scholar 

  34. 34.

    D.E. Rumelhart, G.E. Hinton, R.J. Williams et al., Learning representations by back-propagating errors. Cognit. Model. 5(3), 1 (1988)

    MATH  Google Scholar 

  35. 35.

    J. O’Hagan, B. McCabe, Tests for the severity of multicolinearity in regression analysis: a comment. Rev. Econ. Stat. 368–370 (1975)

  36. 36.

    F.J. Lin, Solving multicollinearity in the process of fitting regression model using the nested estimate procedure. Qual. Quant. 42(3), 417–426 (2008)

    Article  Google Scholar 

  37. 37.

    N.R. Draper, H. Smith, Applied Regression Analysis, vol. 326 (Wiley, New York, 1998)

    Google Scholar 

  38. 38.

    L. Breiman, Random forests Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  39. 39.

    B. Santra, D.P. Mukherjee, D. Chakrabarti, A non-invasive approach for estimation of hemoglobin analyzing blood flow in palm, in IEEE 14th international symposium on biomedical imaging (ISBI 2017). IEEE vol. 2017, pp. 1100–1103 (2017)

  40. 40.

    F. Mosteller, J.W. Tukey, Data Analysis, Including Statistics, in Handbook of Social Psychology, vol. 2 (Addison-Wesley, Cambridge, 1968)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tarun Chowdhury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, T., Sinha, S. & Roy, S.K. Analysis of Mine Haul Road Performance Using Artificial Neural Network. J. Inst. Eng. India Ser. D (2021). https://doi.org/10.1007/s40033-021-00248-3

Download citation

Keywords

  • Haul road performance
  • Mines
  • Feature importance
  • Artificial neural network (ANN)
  • Regression