Wear Behavioral and Mechanical Studies on Liquid Forged VAL12 Alloy Strengthened by Lanthanum Oxide Dispersoids


Aluminium composite with VAL12 as matrix and La2O3 as dispersoids fabricated through liquid metallurgy route involving liquid forging operation through squeeze casting process in the present investigation. The frictional characteristics of as-cast aluminium composites are studied under dry sliding wear tests by varying the service factors. The samples prepared were examined for its uniform distribution of the reinforcement, phases formed using advanced characterization facilities. Taguchi orthogonal array method is employed in designing the experiments, and the responses are recorded in terms of wear rate and frictional coefficient. The mechanistic studies are carried out by analyzing the wear surface morphology using SEM. Predominantly AMMC shows delamination and abrasion at higher loads due to thermal softening and adhesive mechanisms at lower loads. Load and sliding distance majorly characterize the wear behavior of the AMMCs under un-lubricated sliding conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    C.H. Fan, Y.B. Zhu, N. Yang, Effects of casting temperature and RE refiner on microstructure of the squeeze-cast Al-Zn-Mg-Cu alloy drive hollow shaft. Adv. Mater. Res. 779, 78–83 (2013)

    Google Scholar 

  2. 2.

    S.A. Srinivasan, S.P. Kumaresh Babu, Tailored VAL12 alloy with La2O3 dispersoids and their effect on microstructural and mechanical properties. Mat. Today: Proc. (2020). https://doi.org/10.1016/j.matpr.2020.01.161

    Article  Google Scholar 

  3. 3.

    N.A. Belov, Effect of eutectic phases on the fracture behavior of high-strength castable aluminum alloys. Met. Sci. Heat Treat. 37, 237–242 (1995)

    Google Scholar 

  4. 4.

    T.W. Clyne, J.F. Mason, The squeeze infiltration process for fabrication of metal matrix composites. Met. Trans A 18, 1519–1530 (1987)

    Google Scholar 

  5. 5.

    X. Huang et al., A review of liquid forging process. Adv. Mat. Res. 690(693), 2275–2279 (2013)

    Google Scholar 

  6. 6.

    ASM Metals Handbook Volume15—Casting, 9th edn. (ASM Int., 1988), pp. 710.

  7. 7.

    S. Murali, M.S. Yong, Liquid forging of thin Al–Si structures. J Mater Process Technol. 210, 1276–1281 (2010)

    Google Scholar 

  8. 8.

    Y. Watanabe, H. Sato, Y. Fukui, Wear properties of intermetallic compound reinforced functionally graded materials fabricated by centrifugal solid particle and in-situ methods. J. Solid Mech. Mater. Eng. 2(7), 842–853 (2008)

    Google Scholar 

  9. 9.

    A. Wang, H.J. Rack, Transition wear behavior of SiC-particulate- and SiC-whisker-reinforced 7091 Al metal matrix composites. Mater. Sci. Eng. A 147, 211–224 (1991)

    Google Scholar 

  10. 10.

    A.T. Alpas, J. Zhang, Effect of microstructure (particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate-reinforced aluminum matrix composites. MMTA 25, 969–983 (1994)

    Google Scholar 

  11. 11.

    I. Manivannan, S. Ranganathan, S. Gopalakannan, S. Suresh, Mechanical properties and tribological behavior of Al6061–SiC–Gr self-lubricating hybrid nanocomposites. T. Indian I. metal 71, 1897–1911 (2018)

    Google Scholar 

  12. 12.

    K. Zheng, C. Gao, F. He, Y. Lin, The role of rare earth lanthanum oxide in polymeric matrix brake composites to replace copper. Polymers 10(1027), 1–18 (2018)

    Google Scholar 

  13. 13.

    T. Prakash, S. Sivasankaran, P. Sasikumar, Mechanical and tribological behaviour of friction-stir-processed Al 6061 aluminium sheet metal reinforced with Al2O3/0.5Gr hybrid surface nanocomposite. Arab. J. Sci. Eng. 40, 559–569 (2015)

    Google Scholar 

  14. 14.

    J. Lu, S. Yang, J. Wang, Q. Xue, Mechanical and tribological properties of Ni-based alloy/CeF3/graphite high temperature self-lubricating composites. Wear 249(12), 1070–1076 (2001)

    Google Scholar 

  15. 15.

    K. Zheng, C. Gao, F. He, Y. Lin, L. Jiang, Tribological performance of resin-based brake friction materials modified with La2O3. China Mech. Eng. 29, 666–673 (2018)

    Google Scholar 

  16. 16.

    K. Zheng, C. Gao, F. He, Y. Lin, Y. Lei, Tribological performance of rare earth modified resin matrix brake materials under different conditions. Trans. Mater. Heat Treat. 38, 133–140 (2017)

    Google Scholar 

  17. 17.

    ASTM E384–17, Standard test method for microindentation hardness of materials. (ASTM Inc, USA, 2017).

  18. 18.

    ASTM B557–15, standard test methods for tension testing wrought and cast aluminum- and magnesium-alloy products. (ASTM Inc, USA, 2015)

  19. 19.

    ASTM G99–17, standard test standard test method for wear testing with a pin-on-disk apparatus. (ASTM Inc, USA, 2017)

  20. 20.

    H.T. Naeem, K.S. Mohammed, Microstructural evaluation and mechanical properties of an Al–Zn–Mg–Cu–Alloy after addition of nickel under RRA. Mater. Sci. Appl. 4, 704–711 (2013)

    Google Scholar 

  21. 21.

    W.T. Huo et al., An improved thermo-mechanical treatment of high-strength Al–Zn–Mg–Cu alloy for effective grain refinement and ductility modification. J. Mater. Process Technol. 239, 303–314 (2017)

    Google Scholar 

  22. 22.

    K. Ma et al., Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 62, 141–155 (2014)

    Google Scholar 

  23. 23.

    J. David Raja Selvam et al., Microstructure and mechanical characterization of in situ synthesized AA6061/(TiB2+Al2O3) hybrid aluminum matrix composites. J. Alloys Compd. 740, 529–535 (2018)

    Google Scholar 

  24. 24.

    G. Nageswaran, S. Natarajan, K.R. Ramkumar, Synthesis, structural characterization, mechanical and wear behaviour of Cu–TiO2–Gr hybrid composite through stir casting technique. J. Alloys Compd. 768, 733–741 (2018)

    Google Scholar 

  25. 25.

    N. Radhika, R. Subramanian, S. Venkat Prasat, Tribological behaviour of aluminium/ alumina/graphite hybrid metal matrix composite using taguchi’s techniques. J. Min. Mater. Charact. Eng. JMMCE 10(5), 427–443 (2011)

    Google Scholar 

  26. 26.

    K. Ranjith, Roy, design of experiments using the taguchi approach (Wiley, New York, 2001), pp. 8–20

    Google Scholar 

  27. 27.

    N. Radhika, S. Thirumalini, A. Shivashankar, Investigation on mechanical and adhesive wear behavior of centrifugally cast functionally graded copper/SiC metal matrix composite. Trans. Indian Inst. Met. 71(6), 1311–1322 (2018)

    Google Scholar 

  28. 28.

    S. Sardar, S.K. Karmakar, D. Das, Microstructure and tribological performance of alumina–aluminum matrix composites manufactured by enhanced stir casting method. ASME. J. Tribol. 141(4), 041602 (2019)

    Google Scholar 

  29. 29.

    S. Venkat Prasat, R. Subramanian, N. Radhika, B. Anandavel, Dry sliding wear and friction studies on AlSi10Mg–fly ash–graphite hybrid metal matrix composites using Taguchi method. Tribol. Mater. Surf. Interfaces 5(2), 72–81 (2011)

    Google Scholar 

  30. 30.

    A. Kumar, M.M. Mahapatra, P.K. Jha, Modeling the abrasive wear characteristics of in-situ synthesized Al–4.5%Cu/TiC composites. Wear 306, 170–178 (2013)

    Google Scholar 

  31. 31.

    K.G. Thirugnanasambantham et al., Degradation mechanism for high-temperature sliding wear in surface-modified In718 superalloy. Cogent Eng 5, 1–11 (2018)

    Google Scholar 

  32. 32.

    S. Sardar, S.K. Karmakar, D. Das, High stress abrasive wear characteristics of Al 7075 alloy and 7075/Al2O3 composite. Measurement 127, 42–62 (2018)

    Google Scholar 

  33. 33.

    B. Bhushan, Introduction to tribology, 2nd edn. (Wiley, Hoboken, 2013), pp. 315–349

    Google Scholar 

  34. 34.

    S.P. Divya et al., Investigation on the effect of ECAP routes on the wear behavior of AA2014. Trans. Indian Inst. Met. 71, 67–77 (2018)

    Google Scholar 

  35. 35.

    Z.N. Farhat, Y. Ding, D.O. Northwood, A.T. Alpas, Effect of grain size on friction and wear of nanocrystalline aluminum. Mater. Sci. Eng. A 206, 302–313 (1996)

    Google Scholar 

  36. 36.

    E.D. Tingle, The importance of surface oxide films in the friction and lubrication of metals Part I. -the dry friction of surfaces freshly exposed to air. Trans. Faraday Soc. 46, 93–102 (1950)

    Google Scholar 

  37. 37.

    H. Hiratsuka, A. Enomoto, T. Sasada, Friction and wear of Al2O3, ZrO2 and SiO2 rubbed against pure metals. Wear 153, 361–373 (1991)

    Google Scholar 

  38. 38.

    F.E. Kennedy, Frictional heating and contact temperatures—chapter 6, in Modern tribology handbook, Vol 1: principles of tribology, ed. by B. Bhushan (CRC Press, London, 2020)

    Google Scholar 

  39. 39.

    V. Westlund, J. Heinrichs, S. Jacobson, On the role of material transfer in friction between metals: initial phenomena and effects of roughness and boundary lubrication in sliding between aluminium and tool steels. Tribol Lett. 66, 97 (2018)

    Google Scholar 

  40. 40.

    Z. Yusoff, S.B. Jamaludinm, M. Amin, Tribology and wear theory of aluminium composites: review and discussion. Proc. Int. Post Grad. Conf. Eng. 1, 6 (2010)

    Google Scholar 

  41. 41.

    R. Fuentes et al., Wear behaviour of a novel aluminium—nanozirconia composite. J. Exp. Nano Sci. 4, 113–119 (2009)

    Google Scholar 

  42. 42.

    H.A. Jayatissa, B. Ravindran Manu, Tribological properties at the interface of the aluminum and aluminum oxide. J Multidiscip Eng Sci Stud (JMESS) 5(5), 2594–2599 (2019)

    Google Scholar 

  43. 43.

    A.P. Kalmegh, P.M. Khodke, Design of experimentation for composite desirability of low plasticity burnishing process for AISI 4340. Int J Pure Appl Math 120(6), 10221–10235 (2018)

    Google Scholar 

  44. 44.

    M. Komaki, B. Malakooti, Composite desirability function (CDF) approach for evolutionary algorithm parameter tuning, in Proceedings of 2016 International Conference on Industrial Engineering and Operations Management (Detroit, Michigan, USA, 2016), pp. 945–955

  45. 45.

    X. Yang, L. Chen, X. Jin, J. Du, W. Xue, Ceram. Int. 45(9), 12312 (2019)

    Google Scholar 

  46. 46.

    A.A. Agbeleye, D.E. Esezobor, S.A. Balogun, J.O. Agunsoye, J. Solis, A. Neville, J. King Saud. Univ. Sci. 32(1), 21 (2020)

    Google Scholar 

  47. 47.

    H. Mindivan, E. Sabri Kayali, H. Cimenoglu, Wear 268, 645 (2008)

    Google Scholar 

  48. 48.

    B. Bhushan, Introduction to tribology, 2nd edn. (Wiley, UK, 2013), pp. 331–338

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. A. Srinivasan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, S.A., Babu, S.P.K., Thirumaran, B. et al. Wear Behavioral and Mechanical Studies on Liquid Forged VAL12 Alloy Strengthened by Lanthanum Oxide Dispersoids. J. Inst. Eng. India Ser. D (2020). https://doi.org/10.1007/s40033-020-00224-3

Download citation


  • VAL12
  • Squeeze cast
  • Dry sliding wear
  • DOE