Multi-response Optimization of WEDM Parameters Using an Integrated Approach of RSM–GRA Analysis for Pure Titanium

Abstract

Wire electrical discharge machining is widely used in the application where precision is of prime importance, especially for conductive materials. In this study, central composite design of response surface methodology is implemented to design the experiments for optimization of WEDM process parameter on pure titanium. The identified input process variables are pulse on time (Ton), discharge current and pulse off time (Toff), while surface roughness and material removal rate are the output variables. ANOVA was used to study significance and non-significance factors. Grey relational analysis has been used for obtaining an optimal parameter setting for WEDM process to maximize the cutting rate while reducing surface roughness for pure titanium, which is the most preferred material for aerospace and biomedical application. The optimized process parameters were found at Ton of 6 µs, Toff of 4 µs and discharge current of 6 A after implementing GRA technique. A very close relation has been obtained at an optimal condition using GRA after the validation trial.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    C. Leyens, J. Hausmann, J. Kumpfert, in Titanium and Titanium Alloys, ed. by C. Leyens, M. Peters (Wiley-VCH, Weinheim, 2003)

    Google Scholar 

  2. 2.

    L. Zhu, Y. Guan, Y. Wang, Z. Xie, J. Lin, Influence of process parameters of ultrasonic shot peening on surface nanocrystallization and hardness of pure titanium. Int. J. Adv. Manuf. Technol. 89(5–8), 1451–1468 (2017)

    Article  Google Scholar 

  3. 3.

    C. Leyens, M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications (Wiley, Hoboken, 2003)

    Google Scholar 

  4. 4.

    M. Niinomi, Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci. Technol. Adv. Mater. 4(5), 445 (2003)

    Article  Google Scholar 

  5. 5.

    D.T. Maciel, S.L.M. Ribeiro Filho, C.H. Lauro, L.C. Brandão, Characteristics of machined and formed external threads in titanium alloy. Int. J. Adv. Manuf. Technol. 79(5–8), 779–792 (2015)

    Article  Google Scholar 

  6. 6.

    R. Chaudhari et al., Pareto optimization of WEDM process parameters for machining a NiTi shape memory alloy using a combined approach of RSM and heat transfer search algorithm. Adv. Manuf. (2015). https://doi.org/10.1007/s40436-019-00267-0

    Article  Google Scholar 

  7. 7.

    V.K. Jain, Advanced Machining Processes (Allied Publishers, New Delhi, 2009)

    Google Scholar 

  8. 8.

    R. Chaudhari et al., Multi-response optimization of WEDM process parameters for machining of superelastic nitinol shape-memory alloy using a heat-transfer search algorithm. Materials 12(8), 1277 (2019)

    Article  Google Scholar 

  9. 9.

    Y. Liao, Y. Chu, M. Yan, Study of wire breaking process and monitoring of WEDM. Int. J. Mach. Tools Manuf. 37(4), 555–567 (1997)

    Article  Google Scholar 

  10. 10.

    M. Hourmand, S. Farahany, A.A. Sarhan, M.Y. Noordin, Investigating the electrical discharge machining (EDM) parameter effects on Al–Mg2Si metal matrix composite (MMC) for high material removal rate (MRR) and less EWR–RSM approach. Int. J. Adv. Manuf. Technol. 77(5–8), 831–838 (2015)

    Article  Google Scholar 

  11. 11.

    S. Tamang, N. Natarajan, M. Chandrasekaran, Optimization of EDM process in machining micro holes for improvement of hole quality. J. Braz. Soc. Mech. Sci. Eng. 39(4), 1277–1287 (2017)

    Article  Google Scholar 

  12. 12.

    P.U.R.E. Mohanty, S.S. Mahapatra, M.R. Singh, An experimental investigation of machinability of Inconel 718 in electrical discharge machining. Procedia Mater. Sci. 6, 605–611 (2014)

    Article  Google Scholar 

  13. 13.

    T. Sultan, A. Kumar, R.D. Gupta, Material removal rate, electrode wear rate, and surface roughness evaluation in die sinking EDM with hollow tool through response surface methodology. Int. J. Manuf. Eng. 2014, 259129 (2014). https://doi.org/10.1155/2014/259129

    Article  Google Scholar 

  14. 14.

    P. Kuppan, A. Rajadurai, S. Narayanan, Influence of EDM process parameters in deep hole drilling of Inconel 718. Int. J. Adv. Manuf. Technol. 38(1–2), 74–84 (2008)

    Article  Google Scholar 

  15. 15.

    D. Julong, Introduction to grey system theory. J. Grey Syst. 1(1), 1–24 (1989)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    P. Rathi et al., Multi-response Optimization of Ni55.8Ti Shape Memory Alloy Using Taguchi–Grey Relational Analysis Approach, in Recent Advances in Mechanical Infrastructure. (Springer, 2020), pp. 13–23

  17. 17.

    A. Chaurasia, V. Wankhede, R. Chaudhari, Experimental Investigation of High-Speed Turning of INCONEL 718 Using PVD-Coated Carbide Tool Under Wet Condition, in Innovations in Infrastructure. (Springer, 2019), pp. 367–374

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jay Vora.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chaudhari, R., Vora, J., Parikh, D.M. et al. Multi-response Optimization of WEDM Parameters Using an Integrated Approach of RSM–GRA Analysis for Pure Titanium. J. Inst. Eng. India Ser. D 101, 117–126 (2020). https://doi.org/10.1007/s40033-020-00204-7

Download citation

Keywords

  • WEDM
  • Pure titanium
  • RSM
  • Grey relational analysis
  • ANOVA
  • SEM