Ultrasonic Vibration-Induced Shape Memory Polymer (Polyurethane)/Graphene Nanoplatelets Composite

Abstract

Ultrasonic vibration (UV)-induced shape memory polyurethane (PU) and composite containing 1 phr (part per hundred) graphene nanoplatelets (GNPs) were prepared through ex situ polymerization by using microcompounder. Atomic force microscopy and field emission scanning electron microscopy were used for the characterization of surface morphology, surface roughness, and graphene nanoplatelets dispersion in the polyurethane matrix. The thermomechanical properties (storage modulus, loss modulus, energy dissipation factor, and glass transition temperature) were determined by using the dynamic mechanical analyzer. The thermomechanical properties, shape memory stretch and recovery strength, shape fixity, tensile strength, and UV-induced shape recovery are enhancing for a composite having 1 GPU (1 phr GNPs in PU matrix). Shape memory and mechanical properties were improved for composite sample as compared to pure polyurethane. 1 GPU composite sample shows ultrasonic vibration-induced shape recovery, whereas pure polyurethane sample has no shape recovery. The UV-induced shape recovery strongly depends on the dispersion of GNPs and frequency of ultrasonic vibration. For composite sample (1 GPU), embedded GNPs in the PU matrix may absorb the UV frequency and converted into heat energy (lattice vibration of GNPs and heat is transfer through conduction) which is responsible for shape recovery. With increase in the frequency of UV, the shape recovery also increases for the composite. Glass transition temperature (Tg) was influenced with the addition of GNPs into neat polyurethane matrix. UV-induced shape recovery test was carried out in an ultrasonic vibration transducer with variable frequency (0–40 kHz).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    H. Meng, G. Li, A review of stimuli-responsive shape memory polymer composites. Polymer 54(9), 2199–2221 (2013)

    Article  Google Scholar 

  2. 2.

    C. Liu, H. Qin, P.T. Mather, Review of progress in shape-memory polymers. J. Mater. Chem. 17, 1543–1558 (2007). https://doi.org/10.1039/B615954K

    Article  Google Scholar 

  3. 3.

    M.D. Hager, S. Bode, C. Weber, U.S. Schubert, Shape memory polymers: past, present and future developments. Prog. Polym. Sci. 49, 3 (2015). https://doi.org/10.1016/j.progpolymsci.2015.04.002

    Article  Google Scholar 

  4. 4.

    K.K. Patel, R. Purohit, Future Prospects of shape memory polymer nano-composite and epoxy based shape memory polymer—a review. Mater. Today Proc. 5(9), 20193–20200 (2018)

    Article  Google Scholar 

  5. 5.

    R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. 36(5), 638–670 (2011)

    Article  Google Scholar 

  6. 6.

    A. Nag, A. Mitra, S.C. Mukhopadhyay, Graphene and its sensor-based applications: a review. Sensors Actuators A Phys 270, 177–194 (2017)

    Article  Google Scholar 

  7. 7.

    G.K. Gupta, K.K. Patel, R. Purohit, P. Bhagoria, Effect of rolling on Ni–Ti–Fe shape memory alloys prepared through novel powder metallurgy route. Mater. Today Proc. 4(4), 5385–5397 (2017). https://doi.org/10.1016/j.matpr.2017.05.050

    Article  Google Scholar 

  8. 8.

    A. Belmonte, G.C. Lama, G. Gentile, P. Cerruti, V. Ambrogi, X. Fernández-Francos, S. De la Flor, Thermally-triggered free-standing shape-memory actuators. Eur. Polym. J. 1(97), 241–252 (2017). https://doi.org/10.1016/j.eurpolymj.2017.10.006

    Article  Google Scholar 

  9. 9.

    W.M. Huang, B. Yang, L. An, C. Li, Y.S. Chan, Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl. Phys. Lett. 86(11), 114105 (2005). https://doi.org/10.1063/1.1880448

    Article  Google Scholar 

  10. 10.

    Z. Cheng, T. Wang, X. Li, Y. Zhang, H. Yu, NIR–Vis–UV light-responsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites. ACS Appl. Mater. Interfaces. 7(49), 27494–27501 (2015). https://doi.org/10.1021/acsami.5b09676

    Article  Google Scholar 

  11. 11.

    X. Liu, H. Li, Q. Zeng, Y. Zhang, H. Kang, H. Duan, Y. Guo, H. Liu, Electro-active shape memory composites enhanced by flexible carbon nanotube/graphene aerogels. J. Mater. Chem. A 3(21), 11641–11649 (2015). https://doi.org/10.1039/C5TA02490K

    Article  Google Scholar 

  12. 12.

    Y. Xu, D. Chen, Self-healing polyurethane/attapulgite nanocomposites based on disulfide bonds and shape memory effect. Mater. Chem. Phys. 195, 40–48 (2017)

    Article  Google Scholar 

  13. 13.

    X.J. Han, Z.Q. Dong, M.M. Fan, Y. Liu, J.H. li, Y.F. Wang, Q.J. Yuan, B.J. Li, S. Zhang, pH-induced shape-memory polymers. Macromol Rapid Commun 33(12), 1055–1060 (2012). https://doi.org/10.1002/marc.201200153

    Article  Google Scholar 

  14. 14.

    F. Cao, S.C. Jana, Nanoclay-tethered shape memory polyurethane nanocomposites. Polymer 48(13), 3790–3800 (2007). https://doi.org/10.1016/j.polymer.2007.04.027

    Article  Google Scholar 

  15. 15.

    J.H. Park, T.D. Dao, H.I. Lee, H.M. Jeong, B.K. Kim, Properties of graphene/shape memory thermoplastic polyurethane composites actuating by various methods. Materials 7(3), 1520–1538 (2014). https://doi.org/10.3390/ma7031520

    Article  Google Scholar 

  16. 16.

    J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites. Polymer 52(1), 5–25 (2011)

    Article  Google Scholar 

  17. 17.

    T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Recent advances in graphene based polymer composites. Prog. Polym. Sci. 35(11), 1350–1375 (2010)

    Article  Google Scholar 

  18. 18.

    R. Purohit, K.K. Patel, G.K. Gupta, R.S. Rana, Development of Ni–Ti shape memory alloys through novel powder metallurgy route and effect of rolling on their properties. Mater. Today: Proc. 4(4), 5330–5335 (2017). https://doi.org/10.1016/j.matpr.2017.05.043

    Article  Google Scholar 

  19. 19.

    H. Zhang, Z. Chen, Z. Zheng, X. Zhu, H. Wang, Shape memory polymer hybrids of SBS/dl-PLA and their shape memory effects. Mater. Chem. Phys. 137(3), 750–755 (2013)

    Article  Google Scholar 

  20. 20.

    A.T. Karttunen, R. Von Hertzen, Polymer cover induced self-excited vibrations of nipped rolls. J. Sound Vib. 330(16), 3959–3972 (2011)

    Article  Google Scholar 

  21. 21.

    H. Du, Z. Song, J. Wang, Z. Liang, Y. Shen, F. You, Microwave-induced shape-memory effect of silicon carbide/poly (vinyl alcohol) composite. Sens. Actuators A 1(228), 1–8 (2015). https://doi.org/10.1016/j.sna.2015.01.012

    Article  Google Scholar 

  22. 22.

    K.K. Patel, R. Purohit, Improved shape memory and mechanical properties of microwave-induced thermoplastic polyurethane/Graphene nanoplatelets composites. Sens. Actuators A 285, 17–24 (2018)

    Article  Google Scholar 

  23. 23.

    C.Y. Lee, C.C. Chen, T.H. Yang, C.J. Lin, Structural vibration control using a tunable hybrid shape memory material vibration absorber. J. Intell. Mater. Syst. Struct. 23(15), 1725–1734 (2012)

    Article  Google Scholar 

  24. 24.

    Ł. Piszczyk, P. Kosmela, M. Strankowski, Elastic polyurethane foams containing graphene nanoplatelets. Adv. Polym. Technol. 37(6), 1625–1634 (2018)

    Article  Google Scholar 

  25. 25.

    S.K. Yadav, J.W. Cho, Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Appl. Surf. Sci. 266, 360–367 (2013)

    Article  Google Scholar 

  26. 26.

    D. Cai, J. Jin, K. Yusoh, R. Rafiq, M. Song, High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Compos. Sci. Technol. 72(6), 702–707 (2012)

    Article  Google Scholar 

  27. 27.

    B. Yuan, C. Bao, L. Song, N. Hong, K.M. Liew, Y. Hu, Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem. Eng. J. 237, 411–420 (2014)

    Article  Google Scholar 

  28. 28.

    K.K. Patel, R. Purohit, Dispersion of SiO2 nano particles on epoxy based polymer nano composites and its characterization. Orient. J. Chem. 34(6), 2998–3003 (2018)

    Article  Google Scholar 

  29. 29.

    Y. Zhang, X. Jiang, R. Wu, W. Wang, Multi‐stimuli responsive shape memory polymers synthesized by using reaction‐induced phase separation. J. Appl. Polym. Sci. 133, 43534 (2016)

    Google Scholar 

  30. 30.

    K.K. Patel, R. Purohit, S.A.R. Hashmi, R.K. Gupta, S.K. Dwivedi, Development of nano SiO2 particles dispersed shape memory epoxy composites. Appl. Innov. Res. (AIR) 1(1), 21–24 (2019)

    Google Scholar 

Download references

Acknowledgements

All authors pledge their great thanks toward the Maulana Azad National Institute of Technology, Bhopal, for providing research grants.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Krishan Kumar Patel.

Ethics declarations

Conflict of interest

The author Krishan Kumar Patel declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patel, K.K., Purohit, R. Ultrasonic Vibration-Induced Shape Memory Polymer (Polyurethane)/Graphene Nanoplatelets Composite. J. Inst. Eng. India Ser. D 101, 141–149 (2020). https://doi.org/10.1007/s40033-019-00202-4

Download citation

Keywords

  • Shape memory polyurethane
  • AFM
  • GNPs
  • Ultrasonic vibration
  • Nanocomposite