Skip to main content
Log in

Improving Surface Hardness of EN31 Steel by Surface Hardening and Cryogenic Treatment

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

Steels are subjected to different conventional heat treatment (CHT) processes such as annealing, normalizing, hardening, tempering, quenching, and stress relieving, to improve the mechanical properties and surface coating methods such as electroplating, laser coating, CVD, and PVD, and to enhance the tribological and corrosion properties. Cryogenic treatment is usually performed after CHT to further improve these properties. Components with friction surfaces require high surface hardness in order to resist wear. In this work, EN31 steel used in bearings, spline shafts, and tiller blades, is surface-hardened using gas tungsten arc (GTA). To further improve the hardness, cryogenic treatment was done. GTA torch uses thoriated tungsten (2%) electrode to apply the heat on the friction surface. The welding current and angle of the electrode tip were varied to obtain different heat inputs during surface hardening process. Cryogenic treatment was done for five different soaking periods at − 50 °C [shallow cryogenic treatment (SCT)] and − 196 °C [deep cryogenic treatment (DCT)]. Shallow cryogenic treatment was performed using dry ice, and deep cryogenic treatment was performed using liquid nitrogen. Micro-hardness and microstructures of the specimen were studied. Microstructure study shows that considerable amount of retained austenite has been transformed to plate martensite with precipitates of carbide particles, increasing the hardness of the surface. Surface hardness increases with current and soaking period. The maximum hardness is obtained at 200 A for all electrode tip angles. The maximum hardness is obtained at 15 h of soaking period. Specimens treated at − 190 °C were found to exhibit higher hardness than specimens treated at − 50 °C. Further, 200 A welding current with 45° electrode tip angle and 15 h of soaking period for both SCT and DCT is found to produce maximum hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X. Tao, C. Li, L. Han, J. Gu, J. Mater. Res. Technol. 5, 1–13 (2015)

    Google Scholar 

  2. K.T. Cho, K. Song, S.H. Oh, Y.K. Lee, W.B. Lee, Surf. Coat. Technol. 232, 912–919 (2013)

    Article  Google Scholar 

  3. M. Ramezani, T. Pasang, Z. Chen, T. Neitzert, D. Au, J. Mater. Res. Technol. 4, 114–125 (2015)

    Article  Google Scholar 

  4. R. Fragoudakis, S. Karditsas, G. Savaidis, N. Michailidis, Procedia Eng. 74, 309–312 (2014)

    Article  Google Scholar 

  5. S. Sackl, G. Kellezi, H. Leitner, H. Clemens, S. Primig, Mater. Today Proc. 2, S635–S638 (2015)

    Article  Google Scholar 

  6. J. Suchanek, V. Kuklik, Wear 267, 2100–2108 (2009)

    Article  Google Scholar 

  7. S. Hernandez, J. Hardell, H. Winkelmann, M.R. Ripoll, B. Prakash, Wear 338–339, 27–35 (2015)

    Article  Google Scholar 

  8. S. Zhirafar, A. Rezaeian, M. Pugh, J. Mater. Process. Technol. 186, 298–303 (2007)

    Article  Google Scholar 

  9. D. Senthilkumar, I. Rajendran, M. Pellizzari, J. Siiriainen, J. Mater. Process. Technol. 211, 396–401 (2011)

    Article  Google Scholar 

  10. M. Preciado, P.M. Bravo, J.M. Alegre, J. Mater. Process. Technol. 176, 41–44 (2006)

    Article  Google Scholar 

  11. M. Singh, H. Singh, Int. J. Res. Eng. Technol. 03, 169–173 (2014)

    Google Scholar 

  12. A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini, K.H. Stiasny, J. Mater. Process. Technol. 118, 350–355 (2001)

    Article  Google Scholar 

  13. M. Pérez, C. Rodríguez, F.J. Belzunce, Procedia Mater. Sci. 3, 604–609 (2014)

    Article  Google Scholar 

  14. S.S. Gill, H. Singh, R. Singh, J. Singh, Int. J. Adv. Manuf. Technol. 48, 175–192 (2010)

    Article  Google Scholar 

  15. T. Yugandhar, P.K. Krishnan, C.V.B. Rao, R. Kalidas, 6th Int. Tool. Conf. 24, 671–684 (2002)

    Google Scholar 

  16. A. Oppenkowski, S. Weber, W. Theisen, J. Mater. Process. Technol. 210, 1949–1955 (2010)

    Article  Google Scholar 

  17. P.I. Patil, R.G. Tated, Int. J. Comput. Appl. 9, 10–29 (2012) 

    Google Scholar 

  18. D. Das, A.K. Dutta, K.K. Ray, Wear 267, 1371–1380 (2009)

    Article  Google Scholar 

  19. P. Sekhar Babu, Int. J. Res. Eng. Technol. 3, 17–20 (2015)

    Google Scholar 

  20. A. Idayan, A. Gnanavelbabu, K. Rajkumar, Procedia Eng. 97, 1683–1691 (2014)

    Article  Google Scholar 

  21. K. Kamei, A.G. William, L. Koveile, N. Ahmad, A. Chakravorty, R. Davis, IOSRJ. Mech. Civ. Eng. 11, 17–22 (2014)

    Article  Google Scholar 

  22. S. Harish, A. Bensely, D. Mohan Lal, A. Rajadurai, G.B. Lenkey, J. Mater. Process. Technol. 209, 3351–3357 (2009)

    Article  Google Scholar 

  23. R. Saravanan, R. Sellamuthu, Appl. Mech. Mater. 592–594, 53–57 (2014)

    Article  Google Scholar 

  24. R. Saravanan, R. Sellamuthu, Procedia Eng. 97, 1348–1354 (2014)

    Article  Google Scholar 

  25. A.U. Orlowicz, A. Trytek, Weld. Int. 19, 341–348 (2005)

    Article  Google Scholar 

  26. S.G. Sapate, A.D. Chopde, P.M. Nimbalkar, D.K. Chandrakar, Mater. Des. 29, 613–621 (2008)

    Article  Google Scholar 

  27. G. Kocher, O. Parkash, S. Vardhan, Int. J. Emerg. Technol. Adv. Eng. 2, 102–105 (2012)

    Google Scholar 

  28. A.A. Sadek, M. Ushio, F. Matsuda, Metall. Trans. A Phys. Metall. Mater. Sci. 21, 3221–3236 (1990)

    Article  Google Scholar 

  29. M. Ushio, A.A. Sadek, F. Matsuda, Plasma Chem. Plasma Process. 11, 81–101 (1991)

    Article  Google Scholar 

  30. S. Murugappan, S. Arul, C. Campus, Int. J. Appl. Eng. Res. 10, 21549–21563 (2015)

    Google Scholar 

  31. S. Murugappan, S. Arul, Int. J. Appl. Eng. Res. 10, 31329–31340 (2015)

    Google Scholar 

  32. S. Murugappan, S. Arul, S.K. Narayanan, Procedia CIRP 35, 61–66 (2015)

    Article  Google Scholar 

  33. A.W. Orłowicz, A. Trytek, Metall. Mater. Trans. A 34, 2973–2984 (2003)

    Article  Google Scholar 

  34. N.A. Özbek, A. Çiçek, M. Gülesin, O. Özbek, Int. J. Mach. Tools Manuf. 86, 34–43 (2014)

    Article  Google Scholar 

  35. R. Choudhary, H. Kumar, R.K. Garg, Indian J. Eng. Mater. Sci. 17, 91–98 (2010)

    Google Scholar 

  36. N.H. Jun, Y. Lv, L. Mi, H. Liu, Int. Conf. Mater. Mech. Manuf. Eng. (2015). https://doi.org/10.2991/ic3me-15.2015.210

    Google Scholar 

  37. B.R. Chandra, S. Arul, R. Sellamuthu, Procedia Mater. Sci. 5, 2369–2375 (2014)

    Article  Google Scholar 

  38. F.W. Breyfogle, Implementing Six Sigma—Smarter Solutions Using Statistical Methods (Wiley, Hoboken, 1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arul Sanjivi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaanthini, M.K., Sanjivi, A. Improving Surface Hardness of EN31 Steel by Surface Hardening and Cryogenic Treatment. J. Inst. Eng. India Ser. D 100, 37–42 (2019). https://doi.org/10.1007/s40033-019-00177-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-019-00177-2

Keywords

Navigation