Natural Convection from a Pair of Heated Cylinders in a Square Cavity with Non-uniform Temperature on the Side Walls

Abstract

We analyze numerically the natural convective heat transport from two heated cylinders embedded within a cavity with non-uniformly cooled side walls for Ra (Rayleigh number) = 103–106 and S (dimensionless distance between the cylinders) = 0.1–0.4. The imposed non-uniform temperature distribution significantly alters the heat transfer characteristics, being governed by diffusion for low Ra and convection at higher Ra. The analysis yields less heat transfer for the spatially varying temperature profile case in comparison to a uniform temperature case. It reveals that at low Ra (≤ 104), the time-averaged Nusselt number Nut increases with S, while at high Ra (105 and 106), it increases first to reach a maximum value, then decreases and again increases thereafter. Furthermore, the rate of enhancement in Nusselt number with S is highly reduced at high Ra.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    S. Dutta, A.K. Biswas, S. Pati, Numer. Heat Transf. Part A: Appl. 73, 222–240 (2018)

    Article  Google Scholar 

  2. 2.

    S. Dutta, N. Goswami, A.K. Biswas, S. Pati, Int. J. Heat Mass Transf. 136, 777–798 (2019)

    Article  Google Scholar 

  3. 3.

    P. Meshram, S. Bhardwaj, A. Dalal, S. Pati, Numer. Heat Transf. Part A: Appl. 70, 1271–1296 (2016)

    Article  Google Scholar 

  4. 4.

    S. Dutta, A.K. Biswas, S. Pati, Int. J. Ambient Energy (2019). https://doi.org/10.1080/01430750.2019.1630304

    Article  Google Scholar 

  5. 5.

    S. Dutta, A.K. Biswas, S. Pati, Int. J. Numer. Methods Heat Fluid Flow 29, 4826–4849 (2019)

    Article  Google Scholar 

  6. 6.

    S. Dutta, N. Goswami, S. Pati, A.K. Biswas, J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09634-7

    Article  Google Scholar 

  7. 7.

    S. Dutta, S. Pati, A.K. Biswas, Heat Transf. 49, 3287–3313 (2020)

    Article  Google Scholar 

  8. 8.

    S. Dutta, A.K. Biswas, Front. Heat Mass Transf. 10(8), 1–12 (2018)

    Google Scholar 

  9. 9.

    F. Karimi, H. Xu, Z. Wang, M. Yang, Y. Zhang, Numer. Heat Transf. Part A: Appl. 65, 715–731 (2014)

    Article  Google Scholar 

  10. 10.

    N. Biswas, N.K. Manna, P. Datta, P.S. Mahapatra, Powder Technol. 326, 356–369 (2018)

    Article  Google Scholar 

  11. 11.

    G. De Vahl Davis, Int. J. Numer. Methods Fluids 983, 249–264 (1983)

    Article  Google Scholar 

  12. 12.

    N.K. Ghaddar, Int. J. Heat Mass Transf. 35(10), 2327–2334 (1992)

    Article  Google Scholar 

  13. 13.

    R. Warrington Jr., R. Powe, Int. J. Heat Mass Transf. 28(2), 319–330 (1985)

    Article  Google Scholar 

  14. 14.

    R. Roslan, H. Saleh, I. Hashim, A. Bataineh, Int. J. Heat Mass Transf. 70, 119–127 (2014)

    Article  Google Scholar 

  15. 15.

    B. Kim, D. Lee, M. Ha, H. Yoon, Int. J. Heat Mass Transf. 51, 1888–1906 (2008)

    Article  Google Scholar 

  16. 16.

    S.H. Hussain, A.K. Hussein, Int. Commun. Heat Mass Transf. 37, 1115–1126 (2010)

    Article  Google Scholar 

  17. 17.

    Y. Park, M. Ha, H. Yoon, Int. J. Heat Mass Transf. 65, 696–712 (2013)

    Article  Google Scholar 

  18. 18.

    Y.G. Park, H.S. Yoon, M.Y. Ha, Int. J. Heat Mass Transf. 59, 7911–7925 (2012)

    Article  Google Scholar 

  19. 19.

    H. Shokouhmand, S.M.A.N.R. Abadi, Heat Mass Transf. 46, 891–902 (2010)

    Article  Google Scholar 

  20. 20.

    G.C. Pal, N. Goswami, S. Pati, Numer. Heat Transf. Part A: Appl. 74(6), 1323–1341 (2018)

    Article  Google Scholar 

  21. 21.

    D. Bhowmick, P.R. Randive, S. Pati, H. Agrawal, A. Kumar, P.K. Srivastava, J. Therm. Anal. Calorim. 141, 839–857 (2020)

    Article  Google Scholar 

  22. 22.

    D. Bhowmick, S. Chakravarthy, P. Randive, S. Pati, J. Therm. Anal. Calorim. 141, 2405–2427 (2020). https://doi.org/10.1007/s10973-020-09411-6

    Article  Google Scholar 

  23. 23.

    D.K. Deka, G.C. Pal, S. Pati, P.R. Randive, in Recent Advances in Mechanical Engineering, Lecture Notes in Mechanical Engineering, ed. by K. Pandey, R. Misra, P. Patowari, U. Dixit (Springer, Singapore, 2021). https://doi.org/10.1007/978-981-15-7711-6_36

    Google Scholar 

  24. 24.

    H.W. Cho, Y.M. Seo, G.S. Mun, M.Y. Ha, Y.G. Park, Int. J. Heat Mass Transf. 114, 307–317 (2017)

    Article  Google Scholar 

  25. 25.

    Y.M. Seo, G.S. Mun, Y.G. Park, M.Y. Ha, Int. J. Heat Mass Transf. 113, 1319–1331 (2017)

    Article  Google Scholar 

  26. 26.

    Y.M. Seo, Y.G. Park, M. Kim, H.S. Yoon, M.Y. Ha, Int. J. Heat Mass Transf. 113, 1306–1318 (2017)

    Article  Google Scholar 

  27. 27.

    M. Kumar, S. Roy, Int. J. Heat Fluid Flow 61, 407–424 (2016)

    Article  Google Scholar 

  28. 28.

    Y.M. Seo, J.M. Lee, Y.G. Park, M.Y. Ha, Heat Mass Transf. 54, 537–551 (2018)

    Article  Google Scholar 

  29. 29.

    S. Dutta, A.K. Biswas, S. Pati, in Advances in Materials, Mechanical and Industrial Engineering. INCOM 2018 Lecture Notes on Multidisciplinary Industrial Engineering. ed. by P. Sahoo, J. Davim (Springer, Cham, 2019), pp. 483–501

    Google Scholar 

  30. 30.

    N. Biswas, N.K. Manna, P. Datta, P.S. Mahapatra, Int. Commun. Heat Mass Transf. 78, 135–144 (2016)

    Article  Google Scholar 

  31. 31.

    S. Bhardwaj, A. Dalal, S. Pati, Energy 79, 467–481 (2015)

    Article  Google Scholar 

  32. 32.

    E. Bilgen, R. Yedder, Int. J. Heat Mass Transf. 50, 139–150 (2007)

    Article  Google Scholar 

  33. 33.

    I.E. Sarris, I. Lekakis, N.S. Vlachos, Numer. Heat Transf. Part A: Appl. 42, 513–530 (2002)

    Article  Google Scholar 

  34. 34.

    R.W. Lewis, K. Morgan, H.R. Thomas, K.N. Seetharamu, The Finite Element Method in Heat Transfer Analysis (Wiley, Hoboken, 1996).

    Google Scholar 

  35. 35.

    R.W. Lewis, P. Nithiarasu, K.N. Seetharamu, Fundamentals of the Finite Element Method for Heat and Fluid Flow (Wiley, Hoboken, 2004).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sukumar Pati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goswami, N., Randive, P.R. & Pati, S. Natural Convection from a Pair of Heated Cylinders in a Square Cavity with Non-uniform Temperature on the Side Walls. J. Inst. Eng. India Ser. C (2021). https://doi.org/10.1007/s40032-021-00667-x

Download citation

Keywords

  • Natural convection
  • Square enclosure
  • Cylinders
  • Non-uniform temperature