Synthesis of 3-PRS Manipulator Based on Revolute and Cone Angle of Spherical Constraints on Range of Rotational Motion of Spherical Joints


This paper presents synthesis of 3-prismatic-revolute-spherical parallel manipulator according to the spherical constraints such as limitation of cone angle on the range of rotational motion of spherical joint because the range of motion of mobile platform of manipulator will be influenced by the spherical constraints such as the range of cone angle of rotational motion of spherical joints. Therefore, while determining the parameters of the 3-PRS manipulator, the limitations on the cone angle of rotational motion of spherical joints are considered. The results of cone angle of rotational motion of each spherical joint in each position \(\left( {{\varvec{n}}_{{{\varvec{ji}}}} } \right)\) are determined and compared with the spherical constraint condition of spherical joint of the manipulator. The synthesis of the manipulator is carried out by the limitation on range of motion of cone angle of spherical constraints and is solved by using least-square method, and the synthesized multi-positional 3-PRS parallel manipulator is suitable in surgical and space applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


\(\overrightarrow {{P_{i} }}\) :

Position vector of \(\overrightarrow {OP}\)

\(\phi_{i} , \theta_{i} , \psi_{i}\) :

Orientations of moving platform w.r.t. base reference-frame

\(o_{{R_{{P_{i} }} }}\) :

Rotation of moving platform about \(\overrightarrow {OP}\)

\(\overrightarrow {{q_{ji} }}\) :

Spherical joint position w.r.t. base reference-frame

\(\overrightarrow {{h_{j} }}\) :

Spherical joint design parameter w.r.t. moving platform reference-frame

\(\tilde{j}\) :

Direction of revolute joint axis

\(\overrightarrow {{g_{j} }}\) :

Position vector of \(\overrightarrow {OB}\)

\(\overrightarrow {{l_{j} }}\) :

Dimensions of moving limb length in the form of vector

\(S_{ci}\) :

Position coordinates of centre of gravity of three spherical joints of moving platform

\(\hat{N}\) :

Normal vector of moving platform

\(\hat{N}_{{\mathop {1i}\limits^{{\smile }} }}\) :

General form of normal vector at spherical joint S1

\(\hat{n}_{{\mathop {1i}\limits^{\smile } }}\) :

Normal vector in normal form at spherical joint S1

\(d_{asi}\) :

Shortest distance between the intersection point of axis of symmetry of spherical joints and the moving platform

\(S_{asi}\) :

Coordinates of axis of symmetry of spherical joints in rotational position

\({\varvec{\eta}}_{{\max}}\) :

Prescribed range of rotational angle of spherical joint

\({\varvec{\eta}}_{{{\varvec{ji}}}}\) :

Obtained range of rotational angles of successive spherical joints


  1. 1.

    V.E. Gough, S.G. Whitehall. Universal tyre test machine. in Proceedings of the 9th International Congress of FISITA, vol. 117, pp. 117–137 (1962).

  2. 2.

    D. Stewart, A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 180(15), 371–386 (1965).

    Article  Google Scholar 

  3. 3.

    J.P. Kim, J. Ryu, Inverse kinematic and dynamic analysis of 6-dof PUS type parallel manipulators. Int. J. KSME 16(1), 13–23 (2002).

    Article  Google Scholar 

  4. 4.

    J.W. Yoon, J. Ryu, Y.K. Hwang, Optimum design of 6-dof parallel manipulator with translational/rotational workspaces for haptic device application. J. Mech. Sci. Technol. 24(5), 1151–1162 (2010).

    Article  Google Scholar 

  5. 5.

    M.T. Masouleh, C. Gosselin, M.H. Saadatzi, X. Kong, H.D. Taghirad, Kinematic analysis of 5-RPUR (3T2R) parallel mechanisms. J. Mec. 46(1), 131–146 (2011).

    Article  MATH  Google Scholar 

  6. 6.

    W. Chao, X.J. Liu, L. Wang, J. Wang, Optimal design of spherical 5R parallel manipulators considering the motion/force transmissibility. J Mech. Des. 132(031002), 1–10 (2010).

    Article  Google Scholar 

  7. 7.

    Y. Fang, L.W. Tsai, Structure synthesis of a class of 4-dof and 5-dof parallel manipulators with identical limb structures. J Robot. Res. 21(9), 799–810 (2002).

    Article  Google Scholar 

  8. 8.

    S. Akhbari, A. Ghadimzadeh Alamdari, M. Mahboubkhah, Circular motion analysis for a novel 4-dof parallel kinematic machine. J. Braz. Soc. Mech. Sci. Eng. 41(5), 215 (2019).

    Article  Google Scholar 

  9. 9.

    Y. Li, Q. Xu, Stiffness analysis for a 3-PUU parallel kinematic machine. J. Mech. Mach. Theory 43(2), 186–200 (2008).

    Article  MATH  Google Scholar 

  10. 10.

    A.J. Sameer, L.W. Tsai, The kinematics of a class of 3-dof, 4-legged parallel manipulators. J. ASME 125, 52–60 (2003).

    Article  Google Scholar 

  11. 11.

    Y.J. Chien, T.C. Chen, Y.L. Lee, Investigation of kinematic analysis and applications for a 3-RRPS parallel manipulator. J. CSME 28, 623–632 (2007)

    Google Scholar 

  12. 12.

    J.S. Zhao, X. Yang, Z. Liang, Z.J. Feng, K. Zhou, On the forward and inverse displacement of spatial parallel manipulators. Int. J. Adv. Manuf. Technol. 29(11–12), 1284–1294 (2006).

    Article  Google Scholar 

  13. 13.

    S. Lu, Y. Li, B. Ding, Multi-objective dimensional optimization of a 3-dof translational PKM considering transmission properties. Int. J. Autom. Comput. 16, 748–760 (2019).

    Article  Google Scholar 

  14. 14.

    J.A. Carretero, R.P. Podhorodeski, M.A. Nahon, C.M. Gosselin, Kinematic analysis and optimization of a new three degree-of-freedom spatial parallel manipulator. J Mech. Des. 122, 17–24 (2000).

    Article  Google Scholar 

  15. 15.

    Y. Li, Q. Xu, Kinematics and dexterity analysis for a novel 3-dof translational parallel manipulator. IEEE Int. Conf. Robot. Autom. Proc. (2005).

    Article  Google Scholar 

  16. 16.

    Y. Li, Q. Xu, Kinematic analysis and design of a new 3-dof translational parallel manipulator. J. ASME 128, 729–737 (2006).

    Article  Google Scholar 

  17. 17.

    Y. Fang, L.W. Tsai, Structure synthesis of a class of 3-dof rotational parallel manipulators. J. IEEE 20, 117–121 (2004).

    Article  Google Scholar 

  18. 18.

    H.S. Kim, L.W. Tsai, Kinematic synthesis of a spatial 3-RPS parallel manipulator. J. ASME 125, 92–97 (2003).

    Article  Google Scholar 

  19. 19.

    N.M. Rao, K.M. Rao, Multi-position dimensional synthesis of a spatial 3-RPS parallel manipulator. J. ASME 128, 815–819 (2006).

    Article  Google Scholar 

  20. 20.

    M.S. Tsai, T.N. Shiau, Y.J. Tsai, T.H. Chang, Direct kinematic analysis of a 3-PRS parallel mechanism. J. Mech. Mach. Theory 38, 71–83 (2003).

    Article  MATH  Google Scholar 

  21. 21.

    G. Pond, J.A. Carretero, Singularity analysis and workspace optimization of the inclined PRS manipulator. CSME Forum, pp. 1–7 (2004).

  22. 22.

    Y. Li, Q. Xu, Kinematic analysis of a 3-PRS parallel manipulator. J. Robot. Comput. Integr. Manuf. 23, 395–408 (2007).

    Article  Google Scholar 

  23. 23.

    S.R. Pundru, M.R. Nalluri, Synthesis of 3-PRS manipulator using exact method. J. Inst. Eng. India Ser. C 100, 1031–1042 (2019).

    Article  Google Scholar 

  24. 24.

    S.R. Pundru, M.R. Nalluri, Synthesis of multi-positions 3-prismatic-revolute-spherical manipulator. J. SN Appl. Sci. 1, 1114 (2019).

    Article  Google Scholar 

Download references

Author information




All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Pundru Srinivasa Rao. The first draft of the manuscript was written by Pundru Srinivasa Rao, and all authors commented on previous versions of the manuscript. All others read and approved the final manuscript.

Corresponding author

Correspondence to Srinivasa Rao Pundru.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Appendix 1: An Appendix “The Constraint Condition for the Positions of Revolute Joint of the 3-PRS Manipulator” Section

Equations (2) and (3) contain the terms \(\overrightarrow {{P_{i} }} , \overrightarrow {{P_{i} }}^{^{\prime}} , o_{{R_{{P_{i} }} }} , o_{{R_{{P_{i} }}^{^{\prime}} }} , \tilde{j}\) which are represented by

$$\overrightarrow {{P_{i} }} = \left[ {\begin{array}{*{20}c} {P_{xi} } \\ {P_{yi} } \\ {P_{zi} } \\ \end{array} } \right]$$
$$\overrightarrow {{P_{i} }}^{^{\prime}} = \left[ {\begin{array}{*{20}c} {P_{xi} } \\ {P_{yi} } \\ {P_{zi} } \\ \end{array} } \right] - \left[ {\begin{array}{*{20}c} {P_{x1} } \\ {P_{y1} } \\ {P_{z1} } \\ \end{array} } \right]$$
$$o_{{R_{{P_{i} }}^{^{\prime}} }} = o_{{R_{{P_{i} }} }} - o_{{R_{{P_{1} }} }}$$
$${o}_{{R}_{{p}_{i}}}=\left[\begin{array}{ccc}{u}_{xi}& {v}_{xi}& {w}_{xi}\\ {u}_{yi}& {v}_{yi}& {w}_{yi}\\ {u}_{zi}& {v}_{zi}& {w}_{zi}\end{array}\right]=\left[\begin{array}{ccc}{s\psi }_{i}{s\theta }_{i}{s\phi }_{i}+{c\theta }_{i}{c\phi }_{i}& {s\psi }_{i}{s\theta }_{i}{c\phi }_{i}{-c\theta }_{i}{s\phi }_{i}& {s\theta }_{i}{c\psi }_{i}\\ {c\psi }_{i}{s\phi }_{i}& {c\psi }_{i}{c\phi }_{i}& -{s\psi }_{i}\\ {s\psi }_{i}{c\theta }_{i}{s\phi }_{i}{-s\theta }_{i}{c\phi }_{i}& {s\psi }_{i}{c\theta }_{i}{c\phi }_{i}+{s\theta }_{i}{s\phi }_{i}& {c\theta }_{i}{c\psi }_{i}\end{array}\right]$$

where \(\phi_{i} , \theta_{i} , \psi_{i}\) denotes orientations of moving platform w. r. t. base reference frame

$$\tilde{j} = \left[ {\begin{array}{*{20}c} {\mathop j\limits_{xj} } \\ {\mathop j\limits_{yj} } \\ 1 \\ \end{array} } \right]$$

Appendix 2: An Appendix “Determination of Cone Angle of Each Spherical Joint in Each Position on Range of Rotational Motion of Spherical Constraint of a 3-PRS Manipulator” section

Equation (28) contains the constants \(\left( {G_{ji} , H_{ji} ,K_{ji} , L_{ji} , M_{ji} , N_{ji} } \right)\) which are calculated by substituting the synthesized values \(\left( {h_{xj} , h_{yj} , h_{zj} } \right),\) the positions of spherical joints values \(\left( {q_{xji} , q_{yji} , q_{zji} } \right)\) and the prismatic actuator position values \(\left( {P_{{R_{xji} }} , P_{{R_{yji} }} , P_{{R_{zji} }} } \right) .\) The constants \(\left( {G_{ji} , H_{ji} ,K_{ji} , L_{ji} , M_{ji} , N_{ji} } \right)\) in range of rotational motion of successive spherical joints in Eq. (28) and used to determined the initial values of \(\eta_{ji}\) and \(d_{asi}\) are

$$G_{ji} = A_{ji} E_{ji}$$
$$H_{ji} = A_{ji} F_{ji}$$
$$K_{ji} = A_{ji} D_{ji}$$
$$L_{ji} = - C_{ji}^{2}$$
$$M_{ji} = - 2B_{ji} C_{ji}$$
$$N_{ji} = - B_{ji}^{2}$$
$$A_{ji} = a_{xji}^{2} + a_{yji}^{2} + a_{zji}^{2}$$
$$a_{xji} = q_{xji} - P_{{R_{xji} }}$$
$$a_{yji} = q_{yji} - P_{{R_{yji} }}$$
$$a_{zji} = q_{zji} - P_{{R_{zji} }}$$
$$B_{ji} = q_{xci} a_{xji} + q_{yci} a_{yji} + q_{zci} a_{zji} + b_{ji}$$
$$b_{ji} = - \left( {q_{xji} a_{xji} + q_{yji} a_{yji} + q_{zji} a_{zji} } \right)$$
$$C_{{ji}} = n_{{1i}} a_{{xji}} + n_{{2i}} a_{{yji}} + n_{{3i}} a_{{zji}}$$
$$D_{{ji}} = q_{{xci}}^{2} + q_{{yci}}^{2} + q_{{zci}}^{2} - 2\left( {q_{{xji}} q_{{xci}} + q_{{yji}} q_{{yci}} + q_{{zji}} q_{{zci}} } \right) + q_{{xji}}^{2} + q_{{yji}}^{2} + q_{{zji}}^{2}$$
$$E_{{ji}} = n_{{1i}}^{2} + n_{{2i}}^{2} + n_{{3i}}^{2}$$
$$F_{{ji}} = 2\left( {q_{{xci}} n_{{1i}} + q_{{yci}} n_{{2i}} + q_{{zci}} n_{{3i}} - q_{{xji}} n_{{1i}} - q_{{yji}} n_{{2i}} - q_{{zji}} n_{{3i}} } \right)$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pundru, S.R., Nalluri, M.R. Synthesis of 3-PRS Manipulator Based on Revolute and Cone Angle of Spherical Constraints on Range of Rotational Motion of Spherical Joints. J. Inst. Eng. India Ser. C 102, 209–219 (2021).

Download citation


  • Spherical constraint
  • Revolute constraint
  • Multi-positions
  • Least-square method