Blast Wave Interaction with Generic Objects and the Measurement of Blast Wave Reattachment Distances

Abstract

The interaction of blast waves with inanimate and biological structures has remained a subject of interest in order to understand their responses to the blast exposure. In this article, the interaction of blast wave with three generic objects namely sphere, cylinder and cone is studied through numerical simulation. The blast wave is generated in a shock tube by limiting its driver section length. The numerical simulation is carried out by solving the Euler equations using ANSYS-Fluent CFD software. The main focus here is to find the typical object shape for which the blast wave gets regenerated earlier at the rear of the object after reflection and diffraction. It is observed that the reattachment occurs first in case of a sphere, followed by the cone and finally the cylinder.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    A.M. Remennikov, Modelling blast loads on buildings in complex city geometries. Comput. Struct. 83, 2197–2220 (2005). https://doi.org/10.1016/j.compstruc.2005.04.003

    Article  Google Scholar 

  2. 2.

    I.G. Cullis, Blast waves and how they interact with structures. J. R. Army Med. Corps 147, 16–26 (2001). https://doi.org/10.1136/jramc-147-01-02

    Article  Google Scholar 

  3. 3.

    N. Michael, Visual Model for Blast Waves and Fracture (Department of Computer Science, University of Toronto, Toronto, 1998)

    Google Scholar 

  4. 4.

    G. Chen, M. Feldman, Free boundary problems in shock reflection/diffraction and related transonic flow problems. Philos. Trans. R. Soc. A 373, 20140276 (2015). https://doi.org/10.1098/rsta.2014.0276

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    A.E. Bryson, R.W.F. Gross, Diffraction of strong shocks by cones, cylinders, and spheres. J. Fluid Mech. 10, 1–16 (1961). https://doi.org/10.1017/S0022112061000019

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    G.B. Whitham, A new approach to problems of shock dynamics part I two-dimensional problems. J. Fluid Mech. 2, 145–171 (1957). https://doi.org/10.1017/S002211205700004X

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    G.B. Whitham, A new approach to problems of shock dynamics part II two-dimensional problems. J. Fluid Mech. 5, 369–386 (1959). https://doi.org/10.1017/S002211205900026X

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    M. Sun, T. Saito, K. Takayama, H. Tanno, Unsteady drag on a sphere by shock wave loading. Shock Waves 14, 3–9 (2005). https://doi.org/10.1007/s00193-004-0235-4

    Article  MATH  Google Scholar 

  9. 9.

    K. Kontis, R. An, J.A. Edwards, Compressible vortex ring studies with a number of generic body configurations. AIAA J 44, 2962–2978 (2006). https://doi.org/10.2514/1.21018

    Article  Google Scholar 

  10. 10.

    T. Murugan, D. Das, Experimental study on a compressible vortex ring in collision with a wall. J. Vis. 15(4), 321–332 (2012). https://doi.org/10.1007/s12650-012-0138-x

    Article  Google Scholar 

  11. 11.

    T. Murugan, S. De, A. Sreevatsa, S. Dutta, Numerical simulation of compressible vortex–wall interaction. Shockwaves 26(3), 311–326 (2016). https://doi.org/10.1007/s00193-015-0611-2

    Article  Google Scholar 

  12. 12.

    T. Murugan, S. De, A. Kundu, I.P.S. Sandhu, D.R. Saroha, Interaction of a shock tube generated blast wave with solid obstacles, in 11th International High Energy Materials Conference & Exhibits, 23–25 November, Pune, India (2017)

  13. 13.

    S. Dey, T. Murugan, D. Chatterjee, Numerical visualization of blast wave interacting with objects. J. Appl. Fluid. Mech. 11(5), 1201–1206 (2018)

    Article  Google Scholar 

  14. 14.

    N. Chandra, S. Ganpule, N.N. Kleinschmit, R. Feng, A.D. Holmberg, A. Sundaramurthy, V. Selvan, A. Alai, Evolution of blast wave profiles in simulated air blasts: experiment and computational modeling. Shock Waves 22, 403–415 (2012). https://doi.org/10.1007/s00193-012-0399-2

    Article  Google Scholar 

  15. 15.

    T. Murugan, S. De, C.L. Dora, D. Das, Numerical simulation and PIV study of compressible vortex ring evolution. Shock Waves 22, 69–83 (2012). https://doi.org/10.1007/s00193-011-0344-9

    Article  Google Scholar 

  16. 16.

    T. Murugan, Flow and acoustic characteristics of high Mach number vortex rings during evolution and wall-interaction: an experimental investigation. Ph.D. thesis, Indian Institute of Technology, Kanpur (2008)

  17. 17.

    S. De, T. Murugan, Numerical simulation of shock tube generated vortex: effect of numerics. Int. J Comput Fluid Dyn. 25, 345–354 (2011). https://doi.org/10.1080/10618562.2011.600694

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    T. Murugan, S. De, C.L. Dora, D. Das, P.P. Kumar, A study of the counter rotating vortex rings interacting with the primary vortex ring in shock tube generated flows. Fluid Dyn. Res. 45(2), 025506 (2013). https://doi.org/10.1088/0169-5983/45/2/025506

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Ansys Fluent, ver. 13, Theory Guide (Ansys Inc., Washington, 2011)

    Google Scholar 

  20. 20.

    R. Ishii, H. Fujimoto, N. Hatta, Y. Umeda, Experimental and numerical analysis of circular pulse jets. J. Fluid Mech. 392, 129–153 (1999). https://doi.org/10.1017/S0022112099005303

    Article  MATH  Google Scholar 

  21. 21.

    K. Takayama, T. Saito, M. Sun, K. Tamai, H. Tanno, J. Falcovitz, Unsteady drag force measurements of shock loaded bodies suspended in a vertical shock tube, in Proceedings of the 21st International Congress of Theoretical and Applied Mechanics, Warsaw, Poland (2004)

  22. 22.

    M.-S. Liou, C. Steffen, A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993). https://doi.org/10.1006/jcph.1993.1122

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    V. Kumar, M. Singh, T. Murugan, P.K. Chatterjee, Effect of free stream turbulence on flow past a circular cylinder at low Reynolds numbers. J. Inst. Eng. India Ser. C. (2018). https://doi.org/10.1007/s40032-017-0422-6

    Article  Google Scholar 

  24. 24.

    A. Kundu, S. De, T. Murugan, C.L. Dora, D. Das, Numerical visualization of shock tube-generated vortex–wall interaction using a fifth-order upwind scheme. J. Vis. 19(4), 667–678 (2016). https://doi.org/10.1007/s12650-016-0362-x

    Article  Google Scholar 

  25. 25.

    C.L. Dora, T. Murugan, S. De, D. Das, Role of slipstream instability in formation of counter-rotating vortex rings ahead of a compressible vortex ring. J. Fluid Mech. 753, 29–48 (2014). https://doi.org/10.1017/jfm.2014.353

    Article  Google Scholar 

  26. 26.

    G. Abate, W. Shyy, Dynamic structure of confined shocks undergoing sudden expansion. Prog. Aerosp. Sci. 38, 23–42 (2002). https://doi.org/10.1016/S0376-0421(01)00016-1

    Article  Google Scholar 

  27. 27.

    M. Sun, K. Takayama, A note on numerical simulation of vortical structures in shock diffraction. Shock Waves 13, 25–32 (2003). https://doi.org/10.1007/s00193-003-0195-0

    Article  MATH  Google Scholar 

  28. 28.

    T.-I. Tseng, R.-J. Yang, Numerical simulation of vorticity production in shock diffraction. AIAA J. 44(5), 1040–1047 (2006). https://doi.org/10.2514/1.16196

    Article  Google Scholar 

Download references

Acknowledgements

Authors sincerely acknowledge the TBRL, Chandigarh, India, for their partial financial support for this work. Authors thank Dr. Anupam Sinha for his support in simulation at high-performance computational facility of CSIR-CMERI. We also acknowledge Mr. Ajoy Kuchlyan for his support in post-processing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dipankar Chatterjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Murugan, T. & Chatterjee, D. Blast Wave Interaction with Generic Objects and the Measurement of Blast Wave Reattachment Distances. J. Inst. Eng. India Ser. C (2020). https://doi.org/10.1007/s40032-020-00596-1

Download citation

Keywords

  • Blast wave reattachment
  • CFD
  • Blast wave interaction
  • Shock tube
  • Vortex ring