Supply Chain Routing in a Diary Industry Using Heterogeneous Fleet System: Simulation-Based Approach


In this paper, an attempt is made to study and improve the transportation facilities of a milk industry using a simulation model developed using Arena. The objective of the proposed simulation model is to demonstrate the optimality of the type of truck that needs to be utilized while transporting the milk keeping into mind the sustainable factors such as environmental and social factors. The case study data have been collected from eight different villages for the quantity of milk supplied and the transportation time from these villages to the respective bulk milk coolers. Based on the data transportation, time histograms are plotted. From these histograms, the goodness of fit line representing the probability distribution curve for all different areas was identified. An Arena-based simulation model was developed for optimization and comparison with the current model. From the findings of the research, it is concluded that the optimized heterogeneous fleet supply chain model is more suitable for the dairy industry, as it is more economically viable and environmentally friendly. The proposed simulation model will aid in the process of decision-making on problems related to logistics and supply chain in similar dairy units.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25


  1. 1.

    J. Fang, J. Zhu, S. Wang, C. Yue, H. Shen, Global warming, human-induced carbon emissions, and their uncertainties. Sci. China Earth Sci. 54(10), 1458 (2011)

    Article  Google Scholar 

  2. 2.

    D. Bodansky, A tale of two architectures: the once and future UN climate change regime. in Climate Change and Environmental Hazards Related to Shipping: An International Legal Framework. (Brill Nijhoff, Leiden, 2013), pp. 35–51

  3. 3.

    M. Freedman, B. Jaggi, Global warming, commitment to the Kyoto protocol, and accounting disclosures by the largest global public firms from polluting industries. Int. J. Acc. 40(3), 215–232 (2005)

    Article  Google Scholar 

  4. 4.

    H. Hoff, M. Andersson, G.H. Christiansen, A. Løkketangen, Industrial aspects and literature survey: fleet composition and routing. Comput. Oper. Res. 37(12), 2041–2061 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    The European Green Deal EUROPEAN COMMISSION Brussels, COM 640 final (2019)

  6. 6.

    E.L. Plambeck, The greening of Wal–Mart's supply chain. Supply Chain Manag. Rev. 11(5), 18–25 (2007)

    Google Scholar 

  7. 7.

    H.M. Wee, S. Wu, Lean supply chain and its effect on product cost and quality: a case study on Ford Motor Company. Supply Chain Manag. Int. J. 14(5), 335–341 (2009)

    Article  Google Scholar 

  8. 8.

    Kodak, Corporate Environmental Report, The Kodak Corporation (Rochester, New York, 2009)

    Google Scholar 

  9. 9.

    K. Branker, J. Jeswiet, I.Y. Kim, Greenhouse gases emitted in manufacturing a product—a new economic model. CIRP Ann. 60(1), 53–56 (2011)

    Article  Google Scholar 

  10. 10.

    International Transport Forum, Reducing Transport Greenhouse Gas Emissions—Trends & data, OECD/ITF (2010)

  11. 11.

    M. Al-E-hashem, S.M. Javad, Y. Rekik, Multi-product multi-period Inventory Routing Problem with a transshipment option: a green approach. Int. J. Prod. Econ. 157, 80–88 (2014)

    Article  Google Scholar 

  12. 12.

    M. Soysal, J.M. Bloemhof-Ruwaard, R. Haijema, J.G. van der Vorst, Modeling a green inventory routing problem for perishable products with horizontal collaboration. Comput. Oper. Res. 89, 168–182 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    C. Cheng, P. Yang, M. Qi, L.M. Rousseau, Modeling a green inventory routing problem with a heterogeneous fleet. Transport. Res. Part E Logist. Transport. Rev. 97, 97–112 (2017)

    Article  Google Scholar 

  14. 14.

    M. Abdel-Baset, V. Chang, A. Gamal, Evaluation of the green supply chain management practices: a novel neutrosophic approach. Comput. Ind. 108, 210–220 (2019)

    Article  Google Scholar 

  15. 15.

    P. Pourhejazy, O.K. Kwon, A practical review of green supply chain management: disciplines and best practices. J. Int. Logist. Trade 14(2), 156–164 (2016)

    Article  Google Scholar 

  16. 16.

    C.R. Carter, D.S. Rogers, A framework of sustainable supply chain management: moving toward new theory. Int. J. Phys. Distrib. Logist. Manag. (2008)

  17. 17.

    J.R. Harrison, Z. Lin, G.R. Carroll, K.M. Carley, Simulation modeling in organizational and management research. Acad. Manag. Rev. 32(4), 1229–1245 (2007)

    Article  Google Scholar 

  18. 18.

    A. Spalanzani, K.E. Samuel, Absorbing uncertainty within supply chains. Int. J. Prod. Qual. Manag. 2(4), 441–458 (2007)

    Google Scholar 

  19. 19.

    G. Behzadi, M.J. O’Sullivan, T.L. Olsen, A. Zhang, Agribusiness supply chain risk management: a review of quantitative decision models. Omega 79, 21–42 (2018)

    Article  Google Scholar 

  20. 20.

    C.H. Glock, T. Kim, Coordinating a supply chain with a heterogenous vehicle fleet under greenhouse gas emissions. Int. J. Logist. Manag. 26(3), 494–516 (2015)

    Article  Google Scholar 

  21. 21.

    J.M. Bloemhof-Ruwaard, P. Van Beek, L. Hordijk, L.N. Van Wassenhove, Interactions between operational research and environmental management. Eur. J. Oper. Res. 85(2), 229–243 (1995)

    MATH  Article  Google Scholar 

  22. 22.

    R. Roy, R.C. Whelan, Successful recycling through value-chain collaboration. Long Range Plan. 25(4), 62–71 (1992)

    Article  Google Scholar 

  23. 23.

    H. Min, V. Jayaraman, R. Srivastava, Combined location-routing problems: a research directions synthesis and future. Eur. J. Oper. Res. 108, 1–15 (1998)

    MATH  Article  Google Scholar 

  24. 24.

    S. Lippmann, Supply chain environmental management: elements for success. Environ. Manag. 6(2), 175–182 (1999)

    Google Scholar 

  25. 25.

    S. Dowlatshahi, Developing a theory of reverse logistics. Interfaces. 30(3), 143–155 (2000)

    Article  Google Scholar 

  26. 26.

    G. Kovács, S. Kot, New logistics and production trends as the effect of global economy changes. Polish J. Manag. Stud. 14(2), 115–126 (2016)

    Article  Google Scholar 

  27. 27.

    A. Shamsi, A. Al Raisi, M. Aftab, Pollution-inventory routing problem with perishable goods. in Logistics Operations, Supply Chain Management and Sustainability (Springer, Cham, 2014), pp. 585–596

  28. 28.

    S. Treitl, P.C. Nolz, W. Jammernegg, Incorporating environmental aspects in an inventory routing problem A case study from the petrochemical industry. Flex. Serv. Manuf. J. 26(1–2), 143–169 (2014)

    Article  Google Scholar 

  29. 29.

    H. Malekly, The inventory pollution-routing problem under uncertainty. In Green Logistics and Transportation (Springer, Cham, 2015), pp. 83–117

  30. 30.

    M. Soysal, J.M. Bloemhof-Ruwaard, R. Haijema, J.G. van der Vorst, Modeling an Inventory Routing Problem for perishable products with environmental considerations and demand uncertainty. Int. J. Prod. Econ. 164, 118–133 (2015)

    Article  Google Scholar 

  31. 31.

    C. Archetti, L. Bertazzi, G. Laporte, M.G. Speranza, A branch-and-cut algorithm for a vendor-managed inventory-routing problem. Transport. Sci. 41(3), 382–391 (2007)

    Article  Google Scholar 

  32. 32.

    N.H. Moin, S. Salhi, N. Aziz, An efficient hybrid genetic algorithm for the multi-product multi-period inventory routing problem. Int. J. Prod. Econ. 133(1), 334–343 (2011)

    Article  Google Scholar 

  33. 33.

    L.C. Coelho, J.F. Cordeau, G. Laporte, Thirty years of inventory routing. Transport. Sci. 48(1), 1–19 (2014)

    Article  Google Scholar 

  34. 34.

    E.U. Pessoa, M. Poggi de Aragão, A robust branch-cut-and-price algorithm for the heterogeneous fleet vehicle routing problem. Netw. Int. J. 54(4), 167–177 (2009)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    H. Liu, S.Y. Shen, The fleet size and mix vehicle routing problem with time windows. J. Oper. Res. Soc. 50(7), 721–732 (1999)

    MATH  Article  Google Scholar 

  36. 36.

    X. Wang, The heterogeneous fleet location routing problem with simultaneous pickup and delivery and overloads. Discrete Contin. Dyn. Syst. S 12(4&5), 1147–1166 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    J. Jiang, K.M. Ng, K.L. Poh, K.M. Teo, Vehicle routing problem with a heterogeneous fleet and time windows. Expert Syst. Appl. 41(8), 3748–3760 (2014)

    Article  Google Scholar 

  38. 38.

    L. Simeonova, N. Wassan, S. Salhi, G. Nagy, The heterogeneous fleet vehicle routing problem with light loads and overtime: formulation and population variable neighbourhood search with adaptive memory. Expert Syst. Appl. 114, 183–195 (2018)

    Article  Google Scholar 

  39. 39.

    N.K. Sakhala, J.K. Jha, Developing decision support system for heterogeneous fleet vehicle routing problem using hybrid heuristic. Int. J. Logist. Syst. Manag. 26(2), 253–276 (2017)

    Article  Google Scholar 

  40. 40.

    S. Gürel, A. Shadmand, A heterogeneous fleet liner ship scheduling problem with port time uncertainty. Cent Eur J Oper Res 27, 1153–1175 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    B. Li, X. Yang, H. Xuan, A hybrid simulated annealing heuristic for multistage heterogeneous fleet scheduling with fleet sizing decisions. J. Adv. Transport. (2019)

  42. 42.

    V. Baradaran, A. Shafaei, A.H. Hosseinian, Stochastic vehicle routing problem with heterogeneous vehicles and multiple prioritized time windows: mathematical modeling and solution approach. Comput. Ind. Eng. 131, 187–199 (2019)

    Article  Google Scholar 

  43. 43.

    M. B. Abdallah, M. Ennigrou, Hybrid multi-agent approach to solve the multi-depot heterogeneous fleet vehicle routing problem with time window (MDHFVRPTW). in International Conference on Hybrid Intelligent Systems (Springer, Cham, 2018), pp. 376–386

  44. 44.

    F.Y. Vincent, A.P. Redi, P. Jewpanya, A. Lathifah, M.F. Maghfiroh, N.A. Masruroh, A simulated annealing heuristic for the Heterogeneous Fleet Pollution Routing Problem. in Environmental Sustainability in Asian Logistics and Supply Chains (Springer, Singapore, 2019), pp. 171–204

  45. 45.

    D.M. Imani, A. Ahmadi, Green Supply Chain Management: a new strategy for gaining competitive advantage. J. Automob. Eng. Relat. Ind. 10, 14–19 (2009)

    Google Scholar 

  46. 46.

    S. Bringezu, Y. Moriguchi, Material flow analysis. in Green Accounting (Routledge, Abingdon, 2018), pp. 149–166

  47. 47.

    S.A. Darestani, S.A. Tahaei, Vehicle routing with cross-docking decreasing total cost in the supply chain and storage unrestricted capacity. Int. J. Logist. Syst. Manag. 20(1), 148–159 (2015)

    Article  Google Scholar 

  48. 48.

    Y. Liao, P. Hong, S.S. Rao, Supply management, supply flexibility and performance outcomes: an empirical investigation of manufacturing firms. J. Supply Chain Manag. 46(3), 6–22 (2010)

    Article  Google Scholar 

  49. 49.

    D. Simchi-Levi, P. Kaminsky, E. Simchi-Levi, D Shankar, Managing the Supply Chain: Concepts, Strategies, and Case Studies. Tata McGraw Hill (2003). ISBN-13 978-0-07-066698-6.

  50. 50.

    D. Ivanov, Revealing interfaces of supply chain resilience and sustainability: a simulation study. Int. J. Prod. Res. 56(10), 3507–3523 (2018)

    Article  Google Scholar 

  51. 51.

    P. Dallasega, R.A. Rojas, E. Rauch, D.T. Matt, Simulation based validation of supply chain effects through ICT enabled real-time-capability in ETO production planning. Proc. Manuf. 11, 846–853 (2017)

    Google Scholar 

  52. 52.

    A.F. Osorio, S.C. Brailsford, H.K. Smith, S.P. Forero-Matiz, B.A. Camacho-Rodríguez, Simulation-optimization model for production planning in the blood supply chain. Health Care Manag. Sci. 20(4), 548–564 (2017)

    Article  Google Scholar 

  53. 53.

    S. Zhang, Y. Hou, S. Zhang, M. Zhang, Fuzzy control model and simulation for nonlinear supply chain system with lead times. Complexity (2017)

  54. 54.

    C. Keramydas, I. Mallidis, R. Dekker, D. Vlachos, E. Iakovou, Cost and environmental trade-offs in supply chain network design and planning: the merit of a simulation-based approach. J. Simul. 11(1), 20–29 (2017)

    Article  Google Scholar 

  55. 55.

    P. Gianesello, D. Ivanov, D. Battini, Closed-loop supply chain simulation with disruption considerations: a case-study on Tesla. Int. J. Invent. Res. 4(4), 257–280 (2017)

    Article  Google Scholar 

  56. 56.

    R.W. Salem, M. Haouari, A simulation-optimisation approach for supply chain network design under supply and demand uncertainties. Int. J. Prod. Res. 55(7), 1845–1861 (2017)

    Article  Google Scholar 

  57. 57.

    F.F. Schlüter, E. Hetterscheid, M. Henke, A simulation-based evaluation approach for digitalization scenarios in smart supply chain risk management. J. Ind. Eng. Manag. Sci. 2019(1), 179–206 (2019)

    Google Scholar 

  58. 58.

    B. Pires, J. Goldstein, D. Higdon, P. Sabin, G. Korkmaz, S. Shipp, S. Keller, S. Ba, K. Hamall, A. Koehler, S. Reese, A Bayesian simulation approach for supply chain synchronization. in 2017 Winter Simulation Conference (WSC) (IEEE, 2017), pp. 1571–1582

  59. 59.

    M. Jung, M. Park, H.S. Lee, S. Chi, Multimethod supply chain simulation model for high-rise building construction projects. J. Comput. Civ. Eng. 32(3) (2018)

  60. 60.

    J.E. Hammann, N.A. Markovitch, Introduction to Arena [simulation software]. in Winter Simulation Conference Proceedings, 1995 (IEEE, 1995), pp. 519–523

  61. 61.

    A.S. Hashemi, J. Sattarvand, Application of ARENA simulation software for evaluation of open pit mining transportation systems—a case study. in Proceedings of the 12th International Symposium Continuous Surface Mining-Aachen 2014 (Springer, Cham, 2015), pp. 213–224

  62. 62.

    B. Li, W. Qu, H. Xuan, C. Xu, X. Wang, Y. Geng, Shunting strategy for placing-in and taking-out wagons on branch-shaped freight operation network with simulation method. J. Adv. Transport. (2020)

  63. 63.

    L.M. Dias, AA. Vieira, G.A. Pereira, J.A. Oliveira, Discrete simulation software ranking—a top list of the worldwide most popular and used tools. in 2016 Winter Simulation Conference (WSC) (IEEE, 2016), pp. 1060–1071

  64. 64.

    S. Hashim, Simulation study for improving patient treatment services. J. Inf. Commun. Technol. 2(2), 87–104 (2020)

    Google Scholar 

  65. 65.

    X.Y. Leong, N.K. Jajo, S. Peiris, Discrete simulation on elective surgery wait line using arena simulation software. Int. J. Model. Optim. 10(2) (2020)

  66. 66.

    M.N. Isfahani, F. Davari, R. Azizkhani, M. Rezvani, Decreased emergency department overcrowding by discharge lounge: a computer simulation study. Int. J. Prev. Med. 11 (2020)

  67. 67.

    S.V. Patil, V.N. Gaitonde, V.N. Kulkarni, S.V. Kulkarni, Rearranging and optimizing of butterfly valve manufacturing layout using simulation. in Emerging Trends in Mechanical Engineering (Springer, Singapore, 2020), pp. 187–193

  68. 68.

    S. Oueida, S. Kadry, S. Ionescu, Estimating key performance indicators of a new emergency department model. in Hospital Management and Emergency Medicine: Breakthroughs in Research and Practice (IGI Global, 2020), pp. 580–598

  69. 69.

    A. Mohajeri, M. Fallah, Closed-loop supply chain models with considering the environmental impact. Sci. World J. (2014)

  70. 70.

    J.C. Bare, TRACI: the tool for the reduction and assessment of chemical and other environmental impacts. J. Ind. Ecol. 6(3–4), 49–78 (2002)

    Article  Google Scholar 

  71. 71.

    K.H. Lee, Integrating carbon footprint into supply chain management: the case of Hyundai Motor Company (HMC) in the automobile industry. J. Clean. Prod. 19(11), 1216–1223 (2011)

    Article  Google Scholar 

  72. 72.

    A. Jindal, K.S. Sangwan, Multi-objective fuzzy mathematical modelling of closed-loop supply chain considering economical and environmental factors. Ann. Oper. Res. 257(1–2), 95–120 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  73. 73.

    V.K. Sharma, P. Chandna, A. Bhardwaj, Green supply chain management related performance indicators in agro industry: a review. J. Clean. Prod. 141, 1194–1208 (2017)

    Article  Google Scholar 

  74. 74.

    S. Du, L. Hu, L. Wang, Low-carbon supply policies and supply chain performance with carbon concerned demand. Ann. Oper. Res. 255(1–2), 569–590 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  75. 75.

    M. Kim, S. Chai, Implementing environmental practices for accomplishing sustainable green supply chain management. Sustainability 9(7), 1192 (2017)

    Article  Google Scholar 

  76. 76.

    A. Ghadge, M. Kaklamanou, S. Choudhary, M. Bourlakis, Implementing environmental practices within the Greek dairy supply chain. Ind. Manag. Data Syst. (2017)

  77. 77.

    B. Golden, A. Assad, L. Levy, F. Gheysens, The fleet size and mix vehicle routing problem. Comput. Oper. Res. 11, 49–66 (1984)

    MATH  Article  Google Scholar 

  78. 78.

    I. Norstad, K. Fagerholt, G. Laporte, Tramp ship routing and scheduling with speed optimization. Transport. Res. Part C Emerg. Technol. 19(5), 853–865 (2011)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jayakrishna Kandasamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ravichandran, M., Naresh, R. & Kandasamy, J. Supply Chain Routing in a Diary Industry Using Heterogeneous Fleet System: Simulation-Based Approach. J. Inst. Eng. India Ser. C (2020).

Download citation


  • Diary sector
  • Supply chain
  • Optimization
  • Inventory routing problem
  • Arena
  • Heterogeneous fleet system