Skip to main content

Advertisement

Log in

Nonlinear Control of Marine Surface Vessels

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

In the present study, a robust yaw control law design derived from nonlinear extended state observer (NESO) based nonlinear state error feedback controller (NSEFC) in conjunction with nonlinear tracking differentiator (NTD) for marine surface vessels is presented. As marine vessel operates in an environment where significant uncertainties and disturbances are present, an NESO is used to estimate the effect of the uncertainties and disturbances along with the plant states leading to a robust design through disturbance estimation and compensation. Convergence of NESO and NTD is demonstrated. The notable feature of the formulation is that to achieve robustness, accurate plant model or any characterization of the uncertainties and disturbances is not needed. Efficacy of the design is illustrated by simulation. Further, performance of the proposed design is compared with some existing controllers to showcase the effectiveness of the proposed design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.J. Spyrou, Asymmetric surging of ships in following seas and its repercussions for safety. Nonlinear Dyn. 43, 149–172 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. K.J. Spyrou, V. Belenky, N. Themelis, K. Weems, Detection of surf-riding behavior of ships in irregular seas. Nonlinear Dyn. 78, 649–667 (2014)

    Article  MathSciNet  Google Scholar 

  3. C.Y. Tzcng, An internal model control approach to the design of yaw-rate-control ship-steering autopilot. IEEE J. Ocean. Eng. 24, 507–514 (1999)

    Article  Google Scholar 

  4. T.A. Johansen, T.P. Fuglseth, P. Tondel, T.I. Fossen, Optimal constrained control allocation in marine surface. Control Eng. Pract. 16, 457–464 (2008)

    Article  Google Scholar 

  5. S.L. Dai, C. Wang, F. Luo, Identification and learning control of ocean surface ship using neural networks. IEEE Trans. Ind. Inform. 8, 801–810 (2012)

    Article  Google Scholar 

  6. S. Das, A. Bhatt, S.E. Talole, UDE based backstepping design for ship autopilot, in Proceedings of the International Conference on Industrial Instrumentation and Control (ICIC) (College of Engineering Pune, India, 2015), pp. 417–422

  7. L. Yuan, H. Wu, Terminal sliding mode fuzzy control based on multiple sliding surfaces for nonlinear ship autopilot systems. J. Mar. Sci. Appl. 9, 425–430 (2010)

    Article  Google Scholar 

  8. M.R. Katebi, M.J. Grimble, Y. Zhang, \(\text{ H }_{\infty }\) robust control design for dynamic ship positioning. IEE Proc. Control Theory Appl. 144, 110–120 (1997)

    Article  MATH  Google Scholar 

  9. N. Khaled, G. Nabil, G. Chalhoub, A self-tuning guidance and control system for marine surface vessels. Nonlinear Dyn. 73, 897–906 (2013)

    Article  Google Scholar 

  10. Y. Yang, J. Ren, Adaptive fuzzy robust tracking controller design via small gain approach and its application. IEEE Trans. Fuzzy Syst. 11, 783–795 (2003)

    Article  Google Scholar 

  11. G. Tao, Z. Jin, Generalized predictive control with constraints for ship autopilot, in Proceedings of the 24th Chinese Control and Decision Conference (CCDC) (2012), pp. 1648–1551

  12. K.J. Astrom, Why use adaptive control for steering large tankers? Int. J. Control 32, 689–708 (1980)

    Article  Google Scholar 

  13. J.A. Profeta, W.G. Vogt, M.H. Mickle, Disturbance estimation and compensation in linear systems. IEEE Trans. Aerosp. Electron. Syst. 26, 225–231 (1990)

    Article  Google Scholar 

  14. T. Mita, M. Hirata, K. Murata, H. Zhang, \(\text{ H }_\infty\) control versus disturbance-observer-based control. IEEE Trans. Ind. Electron. 45(3), 488–495 (1998)

    Article  Google Scholar 

  15. S. Kwon, W.K. Chung, Robust performance of the multiloop perturbation compensator. IEEE/ASME Trans. Mechatron. 7(2), 190–200 (2002)

    Article  Google Scholar 

  16. R. Sreedhar, B. Fernandez, G.Y. Masada, Robust fault detection in nonlinear systems using sliding mode observers, in Proceedings of the IEEE International Conference on Control and Applications, 13–16 September 1993 (Vancouver, BC, Canada, 1993), pp. 715–721

  17. Z. Gao, Active disturbance rejection control: a paradigm shift in feedback control system design, in Proceedings of the American Control Conference (ACC) (Minneapolis, MN, USA, 2006), pp. 2399–2405

  18. W. Wang, Z. Gao, A comparison study of advanced state observer design techniques, in Proceedings of the American Control Conference (Colorado, USA, 2003), pp. 4754–4759

  19. Q. Zheng, L. Dong, D.H. Lee, Z. Gao, Active disturbance rejection control for MEMS gyroscopes. IEEE Trans. Control Syst. Technol. 17, 1432–1438 (2009)

    Article  Google Scholar 

  20. C. Mingyue, L. Wei, L. Hongzhao, J. Hualong, W. Zhipeng, Extended state observer-based adaptive sliding mode control of differential-driving mobile robot with uncertainties. Nonlinear Dyn. 83, 667–683 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Y.X. Su, B.Y. Duan, C.H. Zheng, Y.F. Zhang, G.D. Chen, J.W. Mi, Disturbance-rejection high-precision motion control of a Stewart platform. IEEE Trans. Control Syst. Technol. 12, 364–374 (2004)

    Article  Google Scholar 

  22. S.E. Talole, S.B. Phadke, Extended state observer based control of flexible joint system, in Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE08), 30 June–02 July 2008 (University of Cambridge, Cambridge, UK, 2008), pp. 2514–2519

  23. A.A. Godbole, T.R. Libin, S.E. Talole, Extended state observer-based robust pitch autopilot design for tactical missiles. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 226, 1482–1501 (2011)

    Article  Google Scholar 

  24. B. Panchal, J.P. Kolhe, S.E. Talole, Robust predictive control of a class of nonlinear systems. J. Guid. Control Dyn. 37, 1437–1445 (2014)

    Article  Google Scholar 

  25. B. Panchal, N. Mate, S.E. Talole, Continuous time predictive control based integrated guidance and control. J. Guid. Control Dyn. 40, 1579–1595 (2017)

    Article  Google Scholar 

  26. S. Das, S.E. Talole, Robust steering autopilot design for marine vessels. IEEE J. Ocean. Eng. 41, 913–922 (2016)

    Article  Google Scholar 

  27. S. Das, S.E. Talole, GESO based robust output tracking controller for marine vessels. Ocean Eng. 121, 156–165 (2016)

    Article  Google Scholar 

  28. J.V. Amerongen, Adaptive steering of ships: a model reference approach. Automatica 20, 3–14 (1984)

    Article  MATH  Google Scholar 

  29. T.I. Fossen, Guidance and Control of Ocean Vehicle (Wiley, New York, 1994)

    Google Scholar 

  30. C. Erazo, F. Angulo, G. Olivar, Stability analysis of the extended state observers by Popov criterion. Theor. Appl. Mech. Lett. 2(4), 043006-1-4 (2012)

    Article  Google Scholar 

  31. J.-J.E. Slotine, W. Li, Applied Nonlinear Control (Prentice-Hall, Englewood Cliffs, 1991)

    MATH  Google Scholar 

  32. Y. Tang, Y. Wu, M. Wu, X. Hu, L. Shen, Nonlinear tracking-differentiator for velocity determination using carrier phase measurements. IEEE J. Sel. Top. Signal Process. 3, 716–725 (2009)

    Article  Google Scholar 

  33. B.-Z. Guoa, Z. Zhaoa, On convergence of tracking differentiator. Int. J. Control 84, 693–701 (2011)

    Article  MathSciNet  Google Scholar 

  34. Y.X. Su, C.H. Zheng, D. Sun, B.Y. Duan, A simple nonlinear velocity estimator for high-performance motion control. IEEE Trans. Ind. Electron. 52, 1161–1169 (2005)

    Article  Google Scholar 

  35. Y.X. Su, C.H. Zheng, P.C. Mueller, B.Y. Duan, A simple improved velocity estimation for low-speed regions based on position measurements only. IEEE Trans. Control Syst. Technol. 14, 937–942 (2006)

    Article  Google Scholar 

  36. E. Zhu, J. Pang, N. Sun, Q. Sun, Z. Chen, Airship horizontal trajectory tracking control based on active disturbance rejection control (ADRC). Nonlinear Dyn. 75, 725–734 (2014)

    Article  MathSciNet  Google Scholar 

  37. Q. Zheng, L. Dong, D.H. Lee, Z. Gao, Active disturbance rejection control for mems gyroscopes. IEEE Trans. Control Syst. Technol. 17, 1432–1438 (2009)

    Article  Google Scholar 

  38. C.L. Angel, L.J. Alberto, C. Isaac, Robust trajectory tracking of a delta robot through adaptive active disturbance rejection control. IEEE Trans. Control Syst. Technol. 23, 1387–1398 (2015)

    Article  Google Scholar 

  39. S. Guofa, R. Xuemei, D. Li, Neural active disturbance rejection output control of multimotor servomechanism. IEEE Trans. Control Syst. Technol. 23, 746–753 (2015)

    Article  Google Scholar 

  40. S.R. Hebertt, L.F. Jesus, G.R. Carlos, C.O.M. Antonio, On the control of the permanent magnet synchronous motor: an active disturbance rejection control approach. IEEE Trans. Control Syst. Technol. 22, 2056–2063 (2014)

    Article  Google Scholar 

  41. L. Fang, L. Yong, C. Yijia, S. Jinhua, M. Wu, A two-layer active disturbance rejection controller design for load frequency control of interconnected power system. IEEE Trans. Power Syst. 31(4), 1–2 (2015)

    Google Scholar 

  42. M. Pizzocaro, D. Calonico, C. Calosso, C. Costanzo, G.A. Levi, F. Mura, Active disturbance rejection control of temperature for ultrastable optical cavities. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 273–280 (2013)

    Article  Google Scholar 

  43. J. Tao, Q. Sun, P. Tan, Z. Chen, Y. He, Active disturbance rejection control (ADRC)-based autonomous homing control of powered parafoils. Nonlinear Dyn. 86, 1461–1476 (2016)

    Article  Google Scholar 

  44. V. Nicolau, On PID controller design by combining pole placement technique with symmetrical optimum criterion. Math. Probl. Eng. 2013, 1–8 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Z. Lei, C. Guo, Disturbance rejection control solution for ship steering system with uncertain time delay. Ocean Eng. 95, 78–83 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarup Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Talole, S.E. Nonlinear Control of Marine Surface Vessels. J. Inst. Eng. India Ser. C 100, 385–400 (2019). https://doi.org/10.1007/s40032-018-0449-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-018-0449-3

Keywords

Navigation