Skip to main content
Log in

Cost Optimal Design of a Power Inductor by Sequential Gradient Search

  • Case Study
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

Power inductors are used for compensating VAR generated by long EHV transmission lines and in electronic circuits. For the EHV-lines, the rating of the inductor is decided upon by techno-economic considerations on the basis of the line-susceptance. It is a high voltage high current device, absorbing little active power and large reactive power. The cost is quite high- hence the design should be made cost-optimally. The 3-phase power inductor is similar in construction to a 3-phase core-type transformer with the exception that it has only one winding per phase and each limb is provided with an air-gap, the length of which is decided upon by the inductance required. In this paper, a design methodology based on sequential gradient search technique and the corresponding algorithm leading to cost-optimal design of a 3-phase EHV power inductor has been presented. The case-study has been made on a 220 kV long line of NHPC running from Chukha HPS to Birpara of Coochbihar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.D. Singh, K.B. Kanchandani, Power Electronics, (Tata McGraw-Hill Education), ISBN: 978-0-07-058389-4

  2. J.J. Grainger, W.D. Stevenson Jr., Power System Analysis, (Tata McGraw-Hill Education, 2003), ISBN: 0-07-058515-6

  3. A. Maity, K. Bhattacharya, A.N. Sanyal, Cost optimal design of a 3-phase 400 Kv power inductor for compensating an EHV line. Int. J. Emerg. Technol. Adv. Eng. 2(9) (2012), ISSN: 2250–2459 (online)

  4. H. Partab, Art and Science of Utilization of Electrical Energy (Dhanpat Rai and Co., New Delhi, 2010)

    Google Scholar 

  5. A.K. Shawney, A Course in Electrical Machine Design (Dhanpat Rai & Sons, New Delhi, 2003)

    Google Scholar 

  6. R. Basak, A. Das, A. Sensarma, A.N. Sanyal, Discrete design optimization of small open type dry transformers. Bulletin Teknik Elektrodan Informatika 1(1), 37–42 (2012). ISSN: 2089-319

  7. A. Chakraborty, S. Halder, Power System Analysis, Operation and Control, (PHI Learning Pvt. Ltd.), ISBN: 978-81-203-4015-2

  8. M.V. Deshpande, Electrical Power System Design, (Tata McGraw-Hill Education), ISBN-13: 978-0-07-451575-4; ISBN-10: 0-07-451575-6

  9. H. Nagaoka, The inductance coefficients of solenoids. J. Coll Sci. 27(3), 31 (1909)

    Google Scholar 

  10. M.G. Say, Performance and Design of AC Machines, (CBS Publishers and Distributors, 2002), ISBN: 10:8123910274

  11. M. Ramamoorty, Computer-Aided Design of Electrical Equipment, (Affiliated East-West Press, 1987), ISBN: 81-85095-57-4

  12. K. Deb, Optimization for Engineering Design, (PHI Learning Pvt. Ltd., 2010), ISBN: 978-81-203-0943-2

  13. S.S. Rao, Engineering Optimization- Theory and Practice, (New Age International), ISBN: 978-81-224-2723-3

  14. NHPC Ltd. BSE Design Engineering, Construction, Execution, Testing and Commissioning of Transmission Lines. (2013)

  15. A. Shanmugasundaram, G. Gangadharan, R. Palani, Electrical Machine Design Data Book, (Wiley Eastern Ltd.), ISBN: 0 85226 813 0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raju Basak.

Appendices

Appendix 1

[Subroutine for the Design of Power Inductor]

Input \( S \leftarrow MVAR \) to be compensated \( S^{'} \leftarrow 1000 \times S/2 \)

// rating of the inductor in KVA

Input \( f,V,K,R_{w} ,K_{s} \)

// frequency, line voltage, emf constant,

 

// window height/width ratio, stacking factor

Input \( K_{w} ,K_{c} ,B_{m} ,\delta \)

// window space factor, constant depending on no of steps,

 

// maximum flux density, current density (A/mm2)

\( E_{t} \leftarrow K\sqrt {S^{'} } \)

// emf per turn, V

\( V_{p} \leftarrow V/\sqrt 3;\,\,N \leftarrow V_{p} /E_{t} \)

// phase voltage, no of turns

\( \phi_{m} \leftarrow E_{t} /(4.44f) \); \( I = s \times 10^{6} /(3V_{p} ) \)

// maximum value of flux, current

\( A_{i} \leftarrow \phi_{m} /B_{m};\,\,\,A_{gi} \leftarrow A_{i} /K_{s} \,\,;\,\,a_{c} \leftarrow I/\delta \)

// net/gross area of iron, conductor area

Input \( N_{st} ,K_{1} \ldots \)

// number of core steps, corresponding length coefficients

\( d \leftarrow \sqrt {A_{gi} /K_{c} };\,\,a \leftarrow K_{1} d \)

// diameter of the fictitious circle round the core;

 

// length of the largest core step

\( A_{w} \leftarrow S^{{\prime }} /3.33fB_{m} A_{i} K_{w} \delta \times 10^{3} \)

// window area

\( W_{w} \leftarrow \sqrt {A_{w} /R_{w} };\,\,H_{w} \leftarrow R_{w} W_{w} \)

// window width, height

\( D_{c} \leftarrow W_{w} + d;\,\,W = 2D_{c} + a \)

// distance between core centres, total length of the core

\( A_{gy} \leftarrow A_{gi} ;\,\,\,W_{y} \leftarrow a\,\,\,\,\,\,\, \)

// gross area, width of yoke

\( \,H_{y} \leftarrow A_{gy} /W_{y} \) \( H \leftarrow H_{w} + 2H_{y} \)

// height of yoke, total height of core

Input \( c_{w} ,c_{l} ,c_{h} \)

// tank clearances

\( t_{w} \leftarrow D_{c} + 2c_{w} ;\,\,t_{l} \leftarrow W + 2c_{l} \,\,;\,\,t_{h} = H + c_{h} \)

// tank dimensions

\( t_{a} \leftarrow 2(t_{l} + t_{w} )t_{h} + t_{l} t_{w} \)

// tank area for radiation

Input \( p_{i} ,\rho ,\rho_{i} ,\rho_{c} \)

// specific iron loss, resistivity of conductor, density of iron, conductor

\( V_{i} = (2W + 3H_{w} )A_{i} ;\,\,W_{i} = V_{i} \rho_{i} \,\,;\,\,\,P_{i} = W_{i} p_{i} \)

// volume, weight of iron, total iron loss

\( L_{mt} = \pi (D_{c} - c_{wd} )\,\,;\,\,R \leftarrow \rho L_{mt} N/a_{c} \,\,;\,\,P_{c} = 3I^{2} R \)

// length of mean turn, resistance, total ohmic loss

\( P_{ls} = P_{c} + P_{i} ;\,\,V_{c} = NL_{mt} a_{c} \times 10^{ - 6} \)

// total loss, volume of conductor

Input \( V_{a} ,\lambda_{r} ,\lambda_{c} ,d_{t} \)

// velocity of air blast, dissipation by radiation, convection,

 

// depth of tank wall

\( \lambda_{c}^{'} \leftarrow \lambda_{c} (1 + 1.3\sqrt {V_{a} } );\,\,V_{oil} = t_{h} t_{l} t_{w} K \)

// dissipation coefficient with air-blast, volume of oil

 

// increased convection due to air-blast at 40 °C

\( x = t_{a} \lambda_{r} \times 40;\,\,t_{t} = (p_{ls} - x)/(\lambda_{c}^{'} \times 40) \)

// dissipation through radiation, total area of cooling tubes in the radiator

\( Input\,s_{i} ,s_{c} ,s_{t} ,s_{o} \,\, - specific\,\,costs \)

 

\( C_{c} = V_{c} \rho_{c} s_{c} \); \( C_{i} = V_{i} \rho_{i} s_{i} \)

// cost of copper and iron

\( C_{\tan k} \leftarrow (t_{a} + t_{t} )d_{t} \rho_{i} s_{t} \)

// cost of tank

\( C_{oil} = V_{oil} s_{o} /1000 \)

// cost of transformer oil

\( C_{t} = (C_{c} + C_{i} + C_{\tan k} + C_{oil} )(1 + OH) \)

// total cost along with overheads

Appendix 2

[Cost Optimal design of a 3-Phase Power Inductor by Exhaustive Search]

Minimum cost 2,714,322/- is obtained for K = 0.43; Rw = 3.72

The design details of the cost-optimal power inductor:

  • KVA-rating of the inductor = 15,000; rated line voltage = 220,000 V

  • Nominal frequency = 50 Hz; connection: Y

  • Conductor material: COPPER; current density = 3.2 A/sq. mm

  • Core material CRGOS: flux-density = 1.7 Tesla

  • Number of turns of the coil = 2933

  • Current in coil = phase current = 39.368 A

  • Current density = 3.2 A/sq. mm; cross section of the conductor = 12.302 sq. mm

  • Net area of core iron = 0.1147357 sq. m; stacking factor = 0.972

  • Gross area of core iron = 0.1180409 sq. m; 3-stepped core has been used.

  • Diameter of the core circle = 0.4229 m

  • Length of the core sides in m: = 0.383/0.299/0.179

  • Area of the window = 0.3608 sq. m

  • Window height/width ratio = 3.72; window height/width in m: 1.1709/0.3081

  • Distance between core centres = 0.6909 m

  • Width/height of yoke in m: 0.3827/0.3084

  • Total length of core = 1.8448 m; total height of core = 1.7878 m

  • Length of air-gap = 0.313 mm

  • Volume of iron = 0.8264 cu. m; weight of iron = 6321.74 kg

  • Iron loss/kg at this flux-density = 2.0966 W; iron loss = 13,254 W; % iron loss = 8.836E−02

  • Mean length of turn = 1.7158 m; resistance of the coil = 9.0001 Ω

  • Copper loss = 41,839.4 W; % copper loss = 0.27893; total % loss = 0.36729

  • The tank length × width × height: 2.273 × 0.851 × 2.188

  • Artificial cooling by air-blast on radiators is being used.

  • The velocity of blast = 5 m/s; the blast constant (with some non-uniformity in blast) = 1.1

  • The dissipation constant in = 35.234 W/sq. m/°C

  • The number of elliptical tubes (75 × 25 mm) in the radiator = 110

  • The cost of sheet metal/kg = Rs. 50/-

  • The weight/cost of tank: 913.4537 kg; Rs. 45,673/-

  • The cost of oil/litre = Rs. 40/-

  • The volume/cost of oil: 4.231074 cu. m; Rs. 169,243/-

  • Volume of iron = 0.82637 cu. m; weight of iron = 6321.7 kg

  • Cost of iron/kg = Rs. 150/-; cost of iron = Rs. 948,261/-

  • Volume of copper = 0.1857 cu. m; weight of copper = 1652.9 kg

  • Cost of copper/kg = Rs. 450/-; cost of copper = Rs. 743,816/-

  • Direct cost allowing 15% labour charge = Rs. 2,193,042/-

  • Selling cost allowing 25% overhead = Rs. 2,741,302/-

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, R., Das, A. & Sanyal, A. Cost Optimal Design of a Power Inductor by Sequential Gradient Search. J. Inst. Eng. India Ser. B 99, 413–418 (2018). https://doi.org/10.1007/s40031-018-0329-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-018-0329-5

Keywords

Navigation