Biometric Authentication for Gender Classification Techniques: A Review

Review Paper


One of the challenging biometric authentication applications is gender identification and age classification, which captures gait from far distance and analyze physical information of the subject such as gender, race and emotional state of the subject. It is found that most of the gender identification techniques have focused only with frontal pose of different human subject, image size and type of database used in the process. The study also classifies different feature extraction process such as, Principal Component Analysis (PCA) and Local Directional Pattern (LDP) that are used to extract the authentication features of a person. This paper aims to analyze different gender classification techniques that help in evaluating strength and weakness of existing gender identification algorithm. Therefore, it helps in developing a novel gender classification algorithm with less computation cost and more accuracy. In this paper, an overview and classification of different gender identification techniques are first presented and it is compared with other existing human identification system by means of their performance.


Feature selection Feature extraction Human identification system PCA LDP, Gender classification methods 


  1. 1.
    E. Makinen, R. Raisamo, Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 541–547 (2008)CrossRefGoogle Scholar
  2. 2.
    J.E. Tapia, C.A. Perez, Gender classification based on fusion of different spatial scale features selected by mutual information from histogram of LBP, intensity, and shape. IEEE Trans. Inf. Forensics Secur. 8(3), 488–499 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Gutta, et al., in Comparative performance evaluation of gray-scale and color information for face recognition tasks. AVBPA (2001)Google Scholar
  4. 4.
    D. Stewart, A. Pass, J. Zhang, Gender classification via lips: static and dynamic features. IET Biom. 2(1), 28–34 (2013)CrossRefGoogle Scholar
  5. 5.
    K. Arai, R. Andrie, Gender classification with human gait based on skeleton model. in 2013 Tenth International Conference on Information Technology: New Generations (ITNG), pp. 113–118 (2013)Google Scholar
  6. 6.
    M. Wu, J. Zhou, J. Sun, Multi-scale ICA texture pattern for gender recognition. Electron. Lett. 48(11), 629–631 (2012)CrossRefGoogle Scholar
  7. 7.
    L. Ballihi et al., Boosting 3-D-geometric features for efficient face recognition and gender classification. IEEE Trans. Inf. Forensics Secur. 7(6), 1766–1779 (2012)CrossRefGoogle Scholar
  8. 8.
    L. Ballihi, et al., Geometric based 3D facial gender classification. in Communications Control and Signal Processing (ISCCSP), 2012 5th International Symposium on. IEEE (2012).Google Scholar
  9. 9.
    J. Tang, X. Liu, H. Cheng, K.M. Robinette, Gender recognition using 3-D human body shapes. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 41(6), 898–908 (2011).Google Scholar
  10. 10.
    M. Hu, Y. Wang, Z. Zhang, D. Zhang, Gait based gender classification using mixed conditional random field. Part B Cybern. IEEE Trans. Syst. Man Cybern. 41(5), 1429–1439 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Gutta, J.R.J. Huang, P. Jonathon, H. Wechsler, Mixture of experts for classification of gender, ethnic origin, and pose of human faces. IEEE Trans. Neural Netw. 11(4), 948–960 (2000)CrossRefGoogle Scholar
  12. 12.
    J. Bekios-Calfa, J.M. Buenaposada, L. Baumela, Revisiting linear discriminant techniques in gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 858–864 (2011)CrossRefGoogle Scholar
  13. 13.
    S. Bianco, F. Gasparini, R. Schettini, Adaptive skin classification using face and body detection. IEEE Trans. Image Process. 24(12), 4756–4765 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Han, C. Otto, X. Liu, A.K. Jain, Demographic estimation from face images: human vs. machine performance. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1148–1161 (2015)CrossRefGoogle Scholar
  15. 15.
    F. Wahid, R.K. Begg, C.J. Hass, S. Halgamuge, D.C. Ackland, Classification of parkinson’s disease gait using spatial-temporal gait features. IEEE J. Biomed. Health Inform. 19(6), 1794–1802 (2015)CrossRefGoogle Scholar
  16. 16.
    H. Chen, A.C. Gallagher, B. Girod, The hidden sides of names—face modeling with first name attributes. IEEE Trans. Pattern Anal. Mach. Intell. 36(9), 1860–1873 (2014)CrossRefGoogle Scholar
  17. 17.
    F.S. Khan, J. van de Weijer, R.M. Anwer, M. Felsberg, C. Gatta, Semantic pyramids for gender and action recognition. IEEE Trans. Image Process. 23(8), 3633–3645 (2014)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    H. Dibeklioğlu, A.A. Salah, T. Gevers, Recognition of genuine smiles. IEEE Trans. Multimed. 17(3), 279–294 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Kong, Z. Jiang, Q. Yang, Modeling neuron selectivity over simple midlevel features for image classification. IEEE Trans. Image Process. 24(8), 2404–2414 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Fu, H. He, Z.-G. Hou, Learning race from face: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(12), 2483–2509 (2014)CrossRefGoogle Scholar
  21. 21.
    G. Zen, L. Porzi, E. Sangineto, E. Ricci, N. Sebe, Learning personalized models for facial expression analysis and gesture recognition. IEEE Trans. Multimed. 18(4), 775–788 (2016)CrossRefGoogle Scholar
  22. 22.
    M.Z. Uddin, A depth video-based facial expression recognition system. IETE Tech. Rev. 29(2), 169 (2012)CrossRefGoogle Scholar
  23. 23.
    B. Moghaddam, M.-H. Yang, Learning gender with support faces. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 707–711 (2002)CrossRefGoogle Scholar
  24. 24.
    S. Yu, T. Tan, K. Huang, K. Jia, X. Wu, A study on gait- based gender classification. IEEE Trans. Image Process. 18(8), 1905–1910 (2009)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Q. Tian, J. Wu, A review on face recognition based on compressive sensing. IETE Tech. Rev. 30(5), 427 (2013)CrossRefGoogle Scholar
  26. 26.
    Y. Hu, J. Yan, P. Shi, A fusion-based method for 3D facial gender classification. in 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE), vol 5, pp. 369–372 (2010)Google Scholar
  27. 27.
    T. Ahsan, T. Jabid, U.-P. Chong, Facial Expression recognition using local transitional pattern on gabor filtered facial images. IETE Tech. Rev. 30(1), 47 (2013)CrossRefGoogle Scholar

Copyright information

© The Institution of Engineers (India) 2017

Authors and Affiliations

  1. 1.Velammal Engineering CollegeChennaiIndia
  2. 2.Sri Ramana Maharishi College of EngineeringCheyyarIndia

Personalised recommendations