Carbonation-Induced Corrosion: A Brief Review on Prediction Models

Abstract

This paper presents a brief review on carbonation depth prediction models. The prediction models are classified into different ways, namely empirical and physical models; and probabilistic and deterministic models. In this paper, empirical and physical models for natural carbonation depth prediction have been reviewed. As a parametric study, carbonation depths are predicted using empirical and physical models for buildings within CSIR-Structural Engineering Research Centre, Chennai campus. From the parametric study, Fib model code, Ekolu’s model, Kokubu’s and Hakkinen’s models showed good correlation (R2 = 0.94) with the measured carbonation depths. Carbonation depths are predicted using Ekolu’s model for ordinary, standard and high-strength concretes for exposure periods of 25, 50 and 100 years at various key locations such as rural areas, sea coast regions, urban settings, industrial areas and tunnels. Carbonation depth is higher in tunnels than coastal region due to increased CO2 concentration and low relative humidity. Therefore, the cover depth required to be provided for corrosion against carbonation is more for tunnels, followed by industrial sites and urban areas.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    E. Roziere, A. Loukili, F. Cussigh, Constr. Build. Mater. 23(1), 190–199 (2009)

    Article  Google Scholar 

  2. 2.

    L. Jiang, B. Lin, Y. Cai, Cem. Concr. Res. 30(5), 699–702 (2000)

    Article  Google Scholar 

  3. 3.

    K. Simsomphon, L. Franke, Cem. Concr. Res. 37, 1047–1058 (2007)

    Article  Google Scholar 

  4. 4.

    P. Sulapha, S.F. Wong, T.H. Wee, S. Swaddiwudhipong, J. Mater. Civ. Eng. 15, 2 (2003)

    Article  Google Scholar 

  5. 5.

    V.G. Papadakis, C.G. Vayenas, M.N. Fardis, J. AIChE 35, 10 (1989)

    Article  Google Scholar 

  6. 6.

    V.G. Papadakis, C.G. Vayenas, M.N. Fardis, ACI Mater. 88, 363–373 (1991)

    Google Scholar 

  7. 7.

    V.G. Papadakis, C.G. Vayenas, M.N. Fardis, ACI Mater. 8, 2 (1991)

    Google Scholar 

  8. 8.

    M.G. Alexander, M. Santhanam, Y. Ballim, Int. J. Adv. Eng. Sci. Appl. Math. 2(3), 95–105 (2010)

    Article  Google Scholar 

  9. 9.

    M. Kokubu, S. Nagataki, ACI-SP 114, 315–329 (1989)

    Google Scholar 

  10. 10.

    T. Hakkinen, Pub. No. 141, Technical Research Centre, Espoo, Finland (1993)

  11. 11.

    ASTM C 173, ASTM International, West Conshohocken, PA, USA (1993)

  12. 12.

    L. Parrott, in Proceedings of Third CANMET-ACI International Conference (ACI SP-145), ed. by M. Malhotra, pp. 283–298 (1994)

  13. 13.

    R.Torrent, G. Frenzer, Federal Office for Roads (VSS Report No. 516, Bern, Switzerland, 1995), p. 106

  14. 14.

    Fib Model Code 2010 Final Draft, vols. 1 and 2 (Fib Bulletin N. 65 and 66, Lausanne, 2012)

  15. 15.

    Fib Bulletin 34, (Fib bulletin, Lausanne, 2006), pp. 126. ISBN: 978-2-88394-074-1

  16. 16.

    S. Ekolu, Cem. Concr. Comput. 36, 688–696 (2018)

    Article  Google Scholar 

  17. 17.

    L. Czarnecki, P. Woyciechowski, Bull. Pol. Acad. Sci. 61(1), 173–181 (2013)

    Google Scholar 

  18. 18.

    M. Thiery, G. Villain, P. Dangla, G. Platret, Cem. Concr. Comput. 37, 1047–1058 (2007)

    Article  Google Scholar 

  19. 19.

    H. Cui, W. Tang, W. Liu, Z. Dong, F. Xiang, Constn. Build. Mater. 93, 258–265 (2015)

    Google Scholar 

  20. 20.

    V.G. Papadakis, Cem. Concr. Res. 30, 1031–1036 (2000)

    Article  Google Scholar 

  21. 21.

    C. Abha, G. Ankit, Curr. Sci. 112, 12 (2017)

    Google Scholar 

  22. 22.

    S. Ekolu, Constr. Build. Mater. 127, 306–320 (2016)

    Article  Google Scholar 

  23. 23.

    IS 456:2000, Bureau of Indian Standards (BIS), New Delhi (2005)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ramesh Gopal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gopal, R., Sangoju, B. Carbonation-Induced Corrosion: A Brief Review on Prediction Models. J. Inst. Eng. India Ser. A 101, 247–257 (2020). https://doi.org/10.1007/s40030-020-00434-8

Download citation

Keywords

  • Reinforced concrete
  • Durability
  • Carbonation
  • Corrosion
  • Prediction models