An Integrated Hydrologic and Hydraulic Flood Modeling Study for a Medium-Sized Ungauged Urban Catchment Area: A Case Study of Tiruchirappalli City Using HEC-HMS and HEC-RAS

Abstract

Floods are a natural calamity that causes loss of human life and destruction of property. They are caused by riverine, coastal and storm surges, cyclones, and tsunami waves. The primary causes of urban floods are an unusual rise in quantum of rainfall, extreme man-made changes in land-use–land-cover patterns, and consequent detrimental hydrological impacts. There are different methods available for flood estimation like rational formulae and empirical methods for approximate estimation of flood peak discharge, but they cannot be applied widely, and their application is confined to a particular region. The current study first discusses the causes of urban floods and then assesses the appropriate flood modeling methods that can be effectively used for urban catchments. Flood modeling methods deployed internationally and nationally in major- and medium-sized cities are discussed, and the research gap is identified. The advantages and demerits of each method are analyzed, and the parameters involved are also identified. An integrated modeling approach is chosen for this case study. In India, only coastal megacities have been considered for flood modeling studies thus far. There have been no research studies conducted on medium-sized urban catchment areas using an integrated modeling approach. Therefore, the present article reviews all the features of a novel integrated flood modeling approach which can be adopted for a medium-sized dendritic pattern ungauged urban catchment area.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    M.B. Abbott, J.C. Bathurst, P.E. Connell, J.R. Rasmussen, An introduction to the European hydrologic system-system hydrologue European, SHE, a: history of a physically-based, distributed modeling system. J. Hydrol. 87, 45–59 (1986)

    Article  Google Scholar 

  2. 2.

    M. Okirya, A. Rugumayo, J. Ovcharovichova, Application of HEC HMS/RAS and GIS tools in flood modeling a case study for river Sironko Uganda. Glob. J. Eng. Design Technol. 2, 19–31 (2012)

    Google Scholar 

  3. 3.

    K. Sowmya, C.M. John, N.K. Shrivastava, Urban flood vulnerability zoning of Cochin City, southwest coast of India, using remote sensing and GIS Natural Hazards. J. Int. Soc. Prev. Mitig. (75), 2 (2014)

  4. 4.

    UN, Urban agglomerations 2007 (United Nations Department of Economic and Social Affairs, Population Division, New York, 2008)

    Google Scholar 

  5. 5.

    Y. Chen, Y. Xu, Y. Yin, Impacts of land use change scenarios on storm-runoff generation in Xitiaoxi basin, China. Quat. Int. 208, 121–128 (2009)

    Article  Google Scholar 

  6. 6.

    G. Prasit, J.N.P. Agnihothri, Preparation of flood reduction plan for Surat city and surrounding region (India). WSEAS Trans. Fluid Mech. 3(2), 116–125 (2008)

    Google Scholar 

  7. 7.

    M.B. Abbott, J.C. Bathurst, P.E. Connell, J.R. Rasmussen, An introduction to the European Hydrologic system—System Hydrologue European, ‘SHE,’ b: structure of a physically-based, distributed modeling system. J. Hydrol. 87, 61–77 (1986)

    Article  Google Scholar 

  8. 8.

    E. Todini, Using a desk-top computer for an on-line flood warning system. IBM J. Res. Dev. 22(5), 464–471 (1978)

    Article  Google Scholar 

  9. 9.

    B. Narasimhan, B.S. Murty, A. Mondal, S. Ghosh, P.P. Mujumdar, A Rapid Assessment, Chennai Flood 2015. www.icwar.iisc.ernet.in (2015)

  10. 10.

    J. Seibert, Regionalisation of parameters for a conceptual rainfall-runoff model. Agric. For. Meteorol. 98, 279–293 (1999)

    Article  Google Scholar 

  11. 11.

    A. Chusit, O. Mark, Modeling of urban flooding in Dhaka city water engineering & management. Asian Institute of Technology, Thailand, in 4th DHI Software Conference (2001)

  12. 12.

    A.F. Ruslan, A.M. Samad, Z.M. Zain, Adnan, 5 hours flood prediction modeling using NNARX structure case study Kuala Lumpur in system engineering and technology, in IEEE 4th International Conference, pp. 1–5 (2014)

  13. 13.

    A.P. Piotrowski, J.J. Napiorkowski, M. Osuch, J. Maciej, On the importance of training methods and ensemble aggregation for runoff prediction by means of artificial neural networks. Hydrol. Sci. J. 61, 1903–1925 (2012)

    Google Scholar 

  14. 14.

    Sulafa Hag Elsafi, Artificial Neural Networks (ANNs) for flood forecasting at Dongola Station in the River Nile, Sudan. Alex. Eng. J. 53, 655–662 (2014)

    Article  Google Scholar 

  15. 15.

    K.J. Beven, Infiltration into a class of vertically non-uniform soils. Hydrol. Sci. J. 29, 425–434 (1984)

    Article  Google Scholar 

  16. 16.

    K.J. Beven, Run-off production and good frequency in catchments of order n: an alternative approach, in Scale Problems in Hydrology, ed. by V.K. Gupta, I. Rodriguez-Iturbe, E.F. Wood (Reidel, Dordrecht, 1986), pp. 107–131

    Google Scholar 

  17. 17.

    Z.-J. Li, K. Zhang, Comparison of three GIS-based hydrological models. J. Hydrol. Eng. 13(5), 364–370 (2008)

    Article  Google Scholar 

  18. 18.

    S. Bergstrom, Development, and application of a conceptual runoff model for Scandinavian catchments. SMHI RHO 7 Norrkoping 134 (1976)

  19. 19.

    J.G. Arnold, R. Srinivasan, R.S.J. Muttiah, R. Williams, Large-area hydrological modeling, and assessment: Part I. Model development. J. Am. Water Resour. Assoc. 34(1), 73–89 (1998)

    Article  Google Scholar 

  20. 20.

    J.G. Arnold, P.M. Allen, Automated methods for estimating base flow and groundwater recharge from streamflow records. J. Am. Water Resour. Assoc. 35(2), 411–424 (1999)

    Article  Google Scholar 

  21. 21.

    M. Bakir, Z. Xingnan, GIS-based hydrological model A comparative study of HEC-HMS and The XINJIANG Model, in Twelfth International Water Technology Conference, IWTC12 (Alexandria, Egypt 2008)

  22. 22.

    F. Hao, M. Sun, X. Geng, W. Huang, W. Ouyang, Coupling the Xinanjiang model with geomorphologic instantaneous unit hydrograph for flood forecasting northeast China. Int. Soil Water Conserv. Res. 3, 366–376 (2015)

    Article  Google Scholar 

  23. 23.

    S.L. Neitsch, J.G. Arnold, J.R. Kiniry, J.R. Williams, Soil and water assessment tool: theoretical documentation, Version 2005. College Station, Tex. USDA-ARS Grassland, Soil, and Water Research Laboratory, and Black land Research Center (2005). www.brc.tamus.edu/swat/downloads/doc/

  24. 24.

    D.M. Amatya, M.K. Jha, Evaluating the SWAT model for a low-gradient forested watershed in Coastal South Carolina. Transactions of the ASABE (2011)

  25. 25.

    K. Wu, Y.J. Xu, Evaluation of the applicability of the SWAT model for coastal watersheds in southeastern Louisiana. J. Am. Water Resour. Assoc. 42(5), 1247–1260 (2006)

    Article  Google Scholar 

  26. 26.

    N. Kannan, C.J.R. Santhi, J.R. Williams, J.G. Arnold, Development of a continuous soil moisture accounting procedure for curve number methodology and its behavior with different evapotranspiration methods. Hydro. Proc. 22(13), 2114–2121 (2007)

    Article  Google Scholar 

  27. 27.

    USACE, United States Army Corps of Engineers. Hydrologic Engineering Center, Hydrologic Modeling System. HEC-HMS, Technical Reference Manual, March 2000.www.usace.army.mil

  28. 28.

    K.D. Gayatri, Pa.B. Ganasri, G. Dwarakish, A review on hydrological models, in International Conference on Water Resources, Coastal And Ocean Engineering (ICWRCOE 2015), Aquatic Procedia (2015), pp. 1001–1007

  29. 29.

    L. Jiang, C. Yangbo, H. Wang, Urban flood simulation based on the SWMM model, in Remote Sensing and GIS for hydrology and water resources proceedings RSHS14 and ICGRHWE14, Guangzhou, China, August 2014. IAH Publ. pp. 368–186 (2015). https://doi.org/10.5194/piahs-368-186-2015

  30. 30.

    J. Chieh, J. Pak, R. Vermeeren, Hydrologic/hydraulic modeling of west minister watershed orange county, in California 2nd Joint Federal Interagency Conference, Las Vegas, NV (2010)

  31. 31.

    A.A. Latif, N.H. Arshad, A review of flood management governance framework in Malaysia and selected countries in information technology and multimedia (ICIMU), in International Conference. pp. 178–183(2014)

  32. 32.

    USACE, United States Army Corps of Engineers. Hydrologic engineering center, River Analysis System HEC-RAS. Hydraulic Reference manual version 3.0 (2001). www.usace.army.mil

  33. 33.

    DHI, Modeling system for rivers and channels reference manual. DHI Water & Environment, Horsholm, DHI Software, Reference Manual (2017). https://manuals.mikepoweredbydhi.help/2017/Water_Resources/Mike_11_ref.pdf

  34. 34.

    J.F. Breilh, E. Chaumillon, X. Bertin, M. Gravelle, Assessment of static flood modeling techniques application to contrasting marshes flooded during Xynthia (western France). Nat. Hazards Earth Syst. 13, 1595–1612 (2013)

    Article  Google Scholar 

  35. 35.

    M. Ali, S.J. Khan, Simulation of impacts land use changes on surface runoff of Lai Nullah Basin in Islamabad, Pakistan. Landsc. Urban Plan. 102, 271–279 (2011)

    Article  Google Scholar 

  36. 36.

    A.M. Dewan, Y. Yamaguchi, Land use and land cover change in Greater Dhaka, Bangladesh using remote sensing to promote sustainable urbanization. Appl. Geogr. 29, 390–401 (2009)

    Article  Google Scholar 

  37. 37.

    P.E. Zope, T.I. Eldho, V. Jothiprakash, Impacts of urbanization on flooding of a coastal urban catchment: a case study of Mumbai City, India. Nat. Hazards 75, 887–908 (2015)

    Article  Google Scholar 

  38. 38.

    P.E. Zope, T.I. Eldho, V. Jothiprakash, Hydrological impacts of land use–land cover change and detention basins on urban flood hazard: a case study of Poisar River basin, Mumbai. India. Nat. Hazards 87(3), 1267–1283 (2017)

    Article  Google Scholar 

  39. 39.

    S. Dasgupta, A.K. Gosain, S. Rao, S. Roy, M. Sarraf, A megacity in a changing climate: the case of Kolkata. Clim. Change 116, 747–766 (2013)

    Article  Google Scholar 

  40. 40.

    L. Courty, Integrated modeling of overland flows and drainage networks in an urban environment. Thesis (2018)

  41. 41.

    P.P. Mujumdar, A supplementary material on urban flooding. www.icwar.iisc.ernet.in (2016)

  42. 42.

    V.A. Rangari, V. Sridhar, N.V. Umamahesh, A.K. Patel, Floodplain mapping and management of urban catchment using HEC-RAS: a case study of Hyderabad City. J. Inst. Eng. India Ser. A (2018). https://doi.org/10.1007/s40030-018-0345-0

    Article  Google Scholar 

  43. 43.

    R. Beiras, J. Bellas, Z. Fernandez, J.I. Lorenzo, A. Garcia, Assessment of coastal marine pollution in Galicia (NW Iberian Peninsula) metal concentrations in seawater, sediments, and mussels (Mytilus galloprovincialis) versus embryo larval bioassays using Paracentrotus lividus and Ciona intestinalis. Marine Environmental Research. 56, 531–553 (2003)

    Article  Google Scholar 

  44. 44.

    HEC, Hydrological Modelling (HEC-HMS) User’s Manual, US Army Corps of Engineers (2006)

  45. 45.

    K.H. Syed, C. Goodrich, D.E. Myers, S. Sorooshian, Spatial characteristics of thunderstorm rainfall fields and their relation to run off. J. Hydrol. 271, 1–21 (2003)

    Article  Google Scholar 

  46. 46.

    D.R. Maidment, D. Djokic, Hydrologic and hydraulic modeling support with geographic information systems (ESRI Press, Redlands, 2000)

    Google Scholar 

  47. 47.

    C.R. Suribabu, J. Bhaskar, Evaluation of urban growth effects on surface runoff using SCS-CN method and Green–Ampt infiltration model. Earth Sci. Inform. 8, 609–626 (2015)

    Article  Google Scholar 

  48. 48.

    R. Dhiman, R. Vishnu Radhan, T.I. Eldho, A. Inamdar, Flood risk and adaptation in Indian coastal cities: recent scenarios. Appl. Water Sci. 9, 5 (2019). https://doi.org/10.1007/s13201-018-0881-9

    Article  Google Scholar 

  49. 49.

    F.J. Chang, J.M. Liang, Y.C. Chen, Flood forecasting using radial basis function neural networks. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 31(4), 530–535 (2001)

    Article  Google Scholar 

  50. 50.

    R. Singh, K. Subramanian, J.C. Refsgaard, Hydrological water balance modelling of a small watershed using MIKE SHE for irrigation planning. Agric. Water Manag. 41(3), 149–166 (1999)

    Article  Google Scholar 

  51. 51.

    J.R. Thompson, H.R. Sorenson, H. Gavin, A. Refsgaard, Application of the coupled MIKE SHE/MIKE 11 modelling system to Lowland Wet grassland in Southeast England. J. Hydrol. 293, 151–179 (2001)

    Article  Google Scholar 

  52. 52.

    Z. Qiu, Evaluation of the cost-effectiveness of conservation buffer placement strategies in a river basin. J. Soil Water Conserv. 64(5), 293–302 (2009)

    Article  Google Scholar 

  53. 53.

    J.G. Arnold, D.N. Moriasi, P.W. Gassman, K.C. Abbaspour, M.J. White, R. Srinivasan, C. Santhi, R.D. Harmel, A. Van Griensven, M.W. Van Liew et al., SWAT: model use, calibration, and validation. Trans. ASABE 55, 1491–1508 (2012)

    Article  Google Scholar 

  54. 54.

    J.G. Arnold, R. Srinivasan, R.S. Muttiah, J.R. Williams, Large area hydrologic modeling and assessment. I. Model development. J. Am. Water Resour. Assoc. 34, 73–89 (1998)

    Article  Google Scholar 

  55. 55.

    H.R. Sørensen, J. Klucovska, J. Topolski, T. Clausen, J.C. Refsgaard, An engineering case study—modeling the influences of Gabcikovo hydropower plant on the hydrology and ecology in the Slovakian part of the river branch system of ZitnyOstrov, in Distributed hydrological modelling, ed. by J.C. Refsgaard (Kluwer, Dordrecht, 1996), pp. 233–253

    Google Scholar 

  56. 56.

    R. Nandurkar, R. Moreand, S. Deshpande, Remotely sensed data and HEC-RAS:PUNE case study, in Conference: Asian Conference on Remote Sensing, at New Delhi (2017)

  57. 57.

    A. Bhootra, B. Chandak, U. Pandya, D. Patel, Application of 2D HEC-RAS hydrodynamic modelling for flood inundation mapping—a case of Ahmedabad City, Gujarat, India. Geophys. Res. Abstr. 20, EGU2018-PREVIEW (2018)

  58. 58.

    K.K. Shukla, A.K. Agarwal, P. Sharma, R. Chaurey, Development of a model to assess flood affected areas in near real-time along major rivers of Uttar Pradesh. India. Int. J. Innov. Res. Sci. Eng. Technol. 4(7), 6362–6377 (2015)

    Google Scholar 

  59. 59.

    V.V. Sai Krishna, A.K. Dikshit, K. Pandey, Flood modelling with global precipitation measurement (GPM) satellite rainfall data: a case study of Dehradun, Uttarakhand, India, in Conference: SPIE Asia-Pacific Remote Sensing (2016). https://doi.org/10.1117/12.2223928

  60. 60.

    S.N. Sahoo, S. Pekkat, Detention ponds for managing flood risk due to increased imperviousness: case study in an urbanizing catchment of India. Nat. Hazards Rev. (2017). https://doi.org/10.1061/(ASCE)NH.1527-6996.0000271

    Article  Google Scholar 

  61. 61.

    K. Chandramohan, R. Vijaya, Hydrologic computations of SCS-CN, rational, area velocity and Tc methods for quantifying the forest surface water runoff—a case study in Sirumalai hill environs of Sathiyar. Int. Res. J. Eng. Technol. 04 (04) (2017)

  62. 62.

    J.Ramirez, U.Rajasekar, T.Coulthard, M.Keiler, Probabilistic mapping of urban flood risk: application to extreme events in Surat, India, in EGU general assembly conference abstracts. 18, 2093(2016)

  63. 63.

    K. Yarakula, D. Deb, B. Samanta, Hydrodynamic modeling of Subarnarekha River and its flood plain using remote sensing and GIS. J. Sci. Ind. Res. 69, 529–536 (2010)

    Google Scholar 

  64. 64.

    T.A. Ansari, B. Yashwant, A.D. Vasudeo, Spatial evaluation of impacts of increase in impervious surface area on SCS-CN and runoff in Nagpur urban watersheds. India. Arab. J. Geosci. 9(18), 702 (2016)

    Article  Google Scholar 

  65. 65.

    S. Patro, C. Chatterjee, S. Mohanty, R. Singh, N.S. Raghuwanshi, J Flood inundation modeling using MIKE FLOOD and remote sensing data. Indian Soc. Remote Sens. 37, 107–118 (2009)

    Article  Google Scholar 

  66. 66.

    C. Sanjay, P. Bhasker, S.L. Damodare, A.P. Abhale, Statistical analysis of seasonal rainfall variability in Nasik district by using GIS interpolation technique. J. Pharmacol. Phytochem. 7(4), 2072–2077 (2018)

    Google Scholar 

  67. 67.

    N. Kumar, D. Lal, A. Sherring, R.K. Issac, Model Earth. Syst. Environ. 4(3), 1463–1475 (2017)

    Article  Google Scholar 

  68. 68.

    R.K. Giri, J. Panda, S. Sudhansu, R.R. Kumar, Validating quantitative precipitation forecast for the Flood Meteorological Office, Patna region during 2011–2014. J. Earth Syst. Sci. 4(125), 709–723 (2016)

    Article  Google Scholar 

  69. 69.

    W. Scharffenberg, M. Fleming, Hydrologic modeling system HEC-HMS v3.5: users manual. USACE, Hydrologic Engineering Center, Davis (2010)

  70. 70.

    D. Abdessamed, B. Abderrazak, Coupling HEC-RAS and HEC-HMS in rainfall–runoff modeling and evaluating floodplain inundation maps in arid environments: case study of Ain Sefra city, Ksour Mountain. SW of Algeria. Environ. Earth Sci. 78, 586 (2019)

    Article  Google Scholar 

  71. 71.

    W. Scharffenberger, M. Fleming, Hydrologic modeling system HEC-HMS v4.2: user’s manual. Davis, CA. USA, CE, Hydrologic Engineering Center. vol. 614 (2016)

Download references

Acknowledgements

The authors wish to gratefully acknowledge the significant contribution by the editor of this journal, the reviewers for their painstaking efforts in evaluating the manuscripts and the editorial team for their unstinting support during the review of the submitted manuscripts.

Funding

Nil—No supporting funds from the organization.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Surendar Natarajan.

Ethics declarations

Conflict of interest

The authors wish to declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Natarajan, S., Radhakrishnan, N. An Integrated Hydrologic and Hydraulic Flood Modeling Study for a Medium-Sized Ungauged Urban Catchment Area: A Case Study of Tiruchirappalli City Using HEC-HMS and HEC-RAS. J. Inst. Eng. India Ser. A 101, 381–398 (2020). https://doi.org/10.1007/s40030-019-00427-2

Download citation

Keywords

  • Flood
  • Land use–land cover
  • GIS
  • HEC-HMS
  • HEC-RAS
  • Medium-sized catchment