Skip to main content
Log in

Prediction of Mean and Design Fatigue Lives of Self Compacting Concrete Beams in Flexure

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

In this paper, result of an investigation conducted to study the flexural fatigue characteristics of self compacting concrete (SCC) beams in flexure are presented. An experimental programme was planned in which approximately 60 SCC beam specimens of size 100 × 100 × 500 mm were tested under flexural fatigue loading. Approximately 45 static flexural tests were also conducted to facilitate fatigue testing. The flexural fatigue and static flexural strength tests were conducted on a 100 kN servo-controlled actuator. The fatigue life data thus obtained have been used to establish the probability distributions of fatigue life of SCC using two-parameter Weibull distribution. The parameters of the Weibull distribution have been obtained by different methods of analysis. Using the distribution parameters, the mean and design fatigue lives of SCC have been estimated and compared with Normally vibrated concrete (NVC), the data for which have been taken from literature. It has been observed that SCC exhibits higher mean and design fatigue lives compared to NVC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

α:

Shape parameter of Weibull distribution

Г():

Gamma function

E[N]:

Mean fatigue life

f r :

Static flexural strength

f max :

Maximum fatigue stress

f min :

Minimum fatigue stress

L R :

Survival probability

N :

Number of cycles to failure

N D :

Design fatigue life

P f :

Probability of failure

R :

Stress ratio = f min/f max

S :

Stress level = f max/f r

References

  1. K. Aas-Jakabson, Fatigue of concrete beams and columns (NTH Institute for Betongkonstruksjoner, Tronclheim, 1970), Bulletin No. 70-1, p. 148

  2. R. Tepfers, Tensile fatigue strength of plain concrete. ACI J. Proc. 76(8), 919–933 (1979)

    Google Scholar 

  3. T.C.C. Hsu, Fatigue of plain concrete. ACI Mater. J. 78, 292–305 (1981)

    Google Scholar 

  4. B. Zhang, D.V. Phillips, K. Wu, Effects of loading frequency and stress reversal on fatigue life of plain concrete. Mag. Concr. Res. 48(177), 361–375 (1996)

    Article  Google Scholar 

  5. R. Tepfers, T. Kutti, Fatigue strength of plain, ordinary and light weight concrete. ACI Mater. J. 76(5), 635–652 (1979)

    Google Scholar 

  6. B. Zhang, D.V. Phillips, K. Wu, Further research on fatigue properties of plain concrete. Mag. Concr. Res. 49(180), 241–252 (1997)

    Article  Google Scholar 

  7. F.W. Klahber, D.Y. Lee, Effects of air content, water cement ratio and aggregate type on the flexural fatigue strength of plain concrete. ACI Mater. J. (Special Publication) 75(5), 111–132 (1982)

    Google Scholar 

  8. C.E. Kesler, Effect of speed of testing on flexural fatigue strength of plain concrete. Proc. Highway Res. Board 32, 251–258 (1953)

    Google Scholar 

  9. J.W. Galloway, H. M. Harding, K.D. Raithby, Effect of age on flexural, fatigue and compressive strength of concrete, TRRL laboratory Report No. 865 (Transport and Road Research Laboratory, Berkshire, 1979)

  10. R. Tepfers, Fatigue of plain concrete subjected to stress reversals, fatigue of concrete structures, SP-75 (ACI, 1982), pp. 195–215

  11. X.P. Shi, T.F. Fwa, S.A. Tan, Flexural fatigue strength of plain concrete. ACI Mater. J. 90(5), 435–440 (1993)

    Google Scholar 

  12. B.H. Oh, Fatigue analysis of plain concrete in flexure. J. Struct. Eng. ASCE 112(2), 273–288 (1986)

    Article  Google Scholar 

  13. B.H. Oh, Fatigue-life distributions of concrete for various stress levels. ACI Mater. J. 88(2), 122–128 (1991)

    Google Scholar 

  14. P.L. Domone, Self compacting concrete: an analysis of case studies. Cement Concr. Compos. 28, 197–208 (2005)

    Article  Google Scholar 

  15. H. Okamura, M. Ouchi, Self-compacting concrete—development, present, and future, in Proceedings of 1st International RILEM Symposium on Self-Compacting Concrete, 1999, pp. 3–14

  16. B. Persson, A comparison between mechanical properties of self compacting concrete and the corresponding properties of normal concrete. Cem. Concr. Res. 31, 193–198 (2000)

    Article  Google Scholar 

  17. H.J.H. Brouwers, H.J. Radix, Self compacting concrete: theoretical and experimental study. Cem. Concr. Res. 35, 2116–2136 (2005)

    Article  Google Scholar 

  18. M. Sonebi, S. Grünewald, J. Walraven, Passing-ability and filling-ability of self consolidating concrete. ACI Mater. J. 104(2), 162–170 (2007)

    Google Scholar 

  19. P.L. Domone, A review of the hardened mechanical properties of self compacting concrete. Cement Concr. Compos. 29, 1–12 (2007)

    Article  Google Scholar 

  20. T. Wustholz, H.W. Reinhard, Deformation behaviour of self compacting concrete under tensile loading. Mater Struct. (RILEM) 40, 965–977 (2007)

    Article  Google Scholar 

  21. S. Turkel, A. Kandemir, Fresh and Hardened properties of SCC made with different aggregate and mineral admixtures. J. Mater. Civ. Eng. ASCE 22(10), 1025–1032 (2010)

    Article  Google Scholar 

  22. B. Singh, R. Kumar, A.S. Mukati, SCC mixes with limestone and chalk powder—the Indian experience, Indian Concr. J., 9–17 (2009)

  23. W. Zhu, J.C. Gibbs, Use of different limestone and chalk powder in self compacting concrete. Cem. Concr. Res. 35, 1457–1462 (2004)

    Article  Google Scholar 

  24. M. Gesoglu, E. Guneyisi, E. Ozbay, Properties of self compacting concretes with binary, ternary and quaternary cementitious blends of fly ash, blast furnace slag and silica fume. Constr. Build. Mater. 23, 1847–1854 (2009)

    Article  Google Scholar 

  25. W.R. Hans, S. Michael, Self consolidating concrete in fire. ACI Mater. J. 103(2), 130–135 (2006)

    Google Scholar 

  26. B. Persson, Sulphate resistance of self compacting concrete. Cem. Concr. Res. 33, 1933–1938 (2003)

    Article  MathSciNet  Google Scholar 

  27. W. Zhu, P.J.M. Bartos, Permeation properties of self compacting concrete. Cem. Concr. Res. 33, 921–926 (2002)

    Article  Google Scholar 

  28. B. Persson, Internal frost resistance and salt frost scaling of self compacting concrete. Cem. Concr. Res. 33, 373–379 (2002)

    Article  Google Scholar 

  29. N. Su, K.C. Hsu, H.W. Chai, A simple mix design method for self compacting concrete. Cem. Concr. Res. 31, 1799–1807 (2001)

    Article  Google Scholar 

  30. H. Okamura, K. Ozawa, Mix-design for self-compacting concrete. Concr. Libr. Japn. Soc. Civ. Eng. 25, 107–120 (1995)

    Google Scholar 

  31. S. Chowdhury, P.C. Basu, New methodology to proportion self consolidating concrete with high volume fly ash. ACI Mater. J. 107(3), 222–230 (2010)

    Google Scholar 

  32. F.K. Ghazi, Rand, S. Al Jadiri, New method for proportioning self-consolidating concrete based on compressive strength requirements. ACI Mater. J. 107(5), 490–497 (2010)

    Google Scholar 

  33. EFNARC, The European guidelines for self compacting concrete, specification, production and use, May 2005, p. 68

  34. S.P. Singh, Y. Mohammadi, S. Goel, S.K. Kaushik, Prediction of mean and design fatigue lives of steel fibrous concrete beams. J. Adv. Struct. Eng. 10(1), 25–36 (2007)

    Article  Google Scholar 

  35. Y. Mohammadi, S.K. Kaushik, Flexural fatigue-life distributions of plain and fibrous concrete at various stress levels. J. Mater. Civ. Eng. ASCE 17(6), 650–658 (2005)

    Article  Google Scholar 

  36. P.H. Wirsching, J.T. P. Yao, Statistical methods in structural fatigue, in Proceedings of the ASCE, vol. 100, (ST6, 1970), pp. 1201–1219

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goel, S., Singh, S.P., Singh, P. et al. Prediction of Mean and Design Fatigue Lives of Self Compacting Concrete Beams in Flexure. J. Inst. Eng. India Ser. A 93, 55–61 (2012). https://doi.org/10.1007/s40030-012-0007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40030-012-0007-6

Keywords

Navigation