Skip to main content

Advertisement

Log in

Porcine Mesenchymal Stem Cell Derivation by Plating Bone Marrow Cells Directly and After Erythrocyte Lysis

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Porcine mesenchymal stem cells (pMSC) have high demand for research, transgenic animal production and as alternate cells for human regenerative therapy. Bone marrow is the most popular source of MSC; however, it contains huge number of erythrocytes. Erythrocytes from bone marrow cells are selectively removed using the plastic adherence property of MSC either by plating directly or after enrichment by differential density centrifugation and erythrocyte lysis. Enrichment of MSC by differential density centrifugation has disadvantages. However, the relative advantage of direct plating vs plating after erythrocyte lysis is not known. Therefore the present experiment was designed to understand the derivation efficiency of pMSC by direct plating and plating after erythrocyte lysis. As a proof-of-concept, pig bone marrow cells were processed for derivation by direct plating and after erythrocyte lysis under uniform culture condition and media formulations. The time taken for confluence in the first passage, cell morphology, presence of pMSC marker genes and the lineage specific differentiation potential at passage 5 were tested in both the groups. The results indicated that the cells adhered similarly in both the methods, reached 80% confluence in about 10 days, appeared with same morphology, with no difference in quality and expression of pMSC markers at passage 5, maintaining similar differentiation potential to lineage specific osteogenic, adipogenic and chondrogenic cells. In conclusion, erythrocyte lysis did not give advantages over non lysis, it is therefore recommended to seed the bone marrow cells directly for pMSC derivation which is easy, fast and inexpensive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hass R, Kasper C, Böhm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9:12. https://doi.org/10.1186/1478-811X-9-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Muguruma Y, Yahata T, Miyatake H, Sato T, Uno T, Itoh J, Kato S, Ito M, Hotta T, Ando K (2006) Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood 107:1878–1887. https://doi.org/10.1182/blood-2005-06-2211

    Article  CAS  PubMed  Google Scholar 

  3. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Criag S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cell. Science 284(5411):143–147. https://doi.org/10.1126/science.284.5411.143

    Article  CAS  PubMed  Google Scholar 

  4. Gang EJ, Jeong JA, Hong SH, Hwang SH, Kim SW, Yang IH, Ahn C, Han H, Kim H (2004) Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells 22(4):617–624. https://doi.org/10.1634/stemcells.22-4-617

    Article  PubMed  Google Scholar 

  5. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kesssler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Basic Sci Rep 105:93–98. https://doi.org/10.1161/hc0102.101442

    Article  Google Scholar 

  6. Prabhakaran MP, Venugopal JR, Ramakrishna S (2009) Mesenchymal stem cell differentiation of neuronal cells on electrospunnanofibrous substrates for nerve tissue engineering. Biomaterials 30(28):4996–5003. https://doi.org/10.1016/j.biomaterials.2009.05.057

    Article  CAS  PubMed  Google Scholar 

  7. Telugu BP, Ezashi T, Roberts RM (2010) Porcine induced pluripotent stem cells analogous to naïve and primed embryonic stem cells of the mouse. Int J Dev Biol 54:1703–1711. https://doi.org/10.1387/ijdb.103200bt

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gudleviciene Z, Kundrotas G, Liudkeviciene R, Rascon J, Jurga M (2015) Quick and effective method of bone marrow mesenchymal stem cell extraction. Open Med 10:44–49. https://doi.org/10.1515/med-2015-0008

    Article  CAS  Google Scholar 

  9. Yamamoto Y, Itoh S, Yamauchi Y, Matsushita K, Ikeda S, Naruse H, Hayashi M (2015) Density gradient centrifugation for the isolation of cells of multiple lineages. J Cell Biochem 116(12):2709–2714. https://doi.org/10.1002/jcb.25270

    Article  CAS  PubMed  Google Scholar 

  10. Saeed H, Saleem Z, Iqtedar M, Islam M, Danish Z, Khan AM (2016) Mesenchymal stem cells (MSCs) as skeletal therapeutics- an update. J Biomed Sci 23:41. https://doi.org/10.1186/s12929-016-0254-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pozzo SD, Urbani S, Mazzanti B, Luciani P, Deledda C, Lombardini L, Benvenuti S, Peri A, Bosi A, Saccardi R (2010) High recovery of mesenchymal progenitor cells with non-density gradient separation. Cryotherapy 12(5):579–586. https://doi.org/10.3109/14653241003709660

    Article  CAS  Google Scholar 

  12. Xing W, Pang AM, Yao JF, Li Y, Shi H, Sheng MY, Zhou Y, Zhao YX, Xu MJ, Yang FC (2013) Efficient isolation of mesenchymal stem cells from human bone marrow by direct plating method combined with modified primary explant culture. Zhongguoshiyanxue ye xuezazhi 21(2):451–454. https://doi.org/10.7534/j.issn.1009-2137.2013.02.040

    Article  CAS  Google Scholar 

  13. Santra L, Gupta S, Kannan S, Singh AK, Kumar GR, Naskar S, Ghosh J, Dhara S (2016) Long bones, a slaughterhouse by-product, may act as an excellent source for mesenchymal stem cells. Indian J Anim Sci 87(1):53–58

    Google Scholar 

  14. Horn P, Bork S, Wagner W (2011) Standardized isolation of human mesenchymal stromal cells with red blood cell lysis. Methods Mol. Biol. 698:23–35. https://doi.org/10.1007/978-1-60761-999-4_3

    Article  CAS  PubMed  Google Scholar 

  15. Pösel C, Möller K, Fröhlich W, Schulz I, Boltze J, Wagner D (2012) Density gradient centrifugation compromises bone marrow mononuclear cell yield. PLoS ONE 7(12):e50293. https://doi.org/10.1371/journal.pone.0050293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Al-Qaisy BA, Yaseen NY, Alwachi SN, AL-Shammari AM (2014) Comparison between three different protocols for isolation and culture of mouse bone marrow derived mesenchymal stem cells. Iraqi J Cancer Med Genet 7(1):26–35

    Google Scholar 

  17. Mareschi K, Rustichelli D, Calabrese R, Gunetti M, Sanavio F, Castiglia S, Risso A, Ferrero I, Tarella C, Franca F (2012) Multipotent mesenchymal stromal stem cell expansion by plating whole bone marrow at a low cellular density: a more advantageous method for clinical use. Stem Cell Int. 2012: ID920581. doi:10/1155/2012/920581

  18. Assmus B, Tonn T, Seeger FH, Yoon C, Leistner D, Klotsche J, Schächinger Seifried E, Zeiher AM, Dimmeler S (2010) Red blood cell contamination of the final cell product impairs the efficacy of autologous bone marrow mononuclear cell therapy. J Am Coll Cardiol 55:13. https://doi.org/10.1016/j.jacc.2009.10.059

    Article  Google Scholar 

  19. Sean JM, David TS (2014) The bone marrow niche for hematopoietic stem cells. Nature 505:327–334. https://doi.org/10.1038/nature12984

    Article  CAS  Google Scholar 

  20. Meguro T, Chen B, Parent AD, Zhang JH (2001) Caspase inhibitors attenuate oxyhemoglobin-induced apoptosis in endothelial cells. Stroke 32:561–566. https://doi.org/10.1161/01.STR.32.2.561

    Article  CAS  PubMed  Google Scholar 

  21. Quintero M, Colombo SL, Godfrey A, Moncada S (2006) Mitochondria as signaling organelles in the vascular endothelium. PNAS 103:5379–5384. https://doi.org/10.1073/pnas.0601026103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Phinney DG, Kopen G, Righter W, Webster S, Tremain N, Prockop DJ (1999) Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 75:424–436. https://doi.org/10.1002/(SICI)1097-4644(19991201)75:3<424::AID-JCB8>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  23. Kundrotas G, Gasperskaja E, Slapsyte G, Gudleviciene Z, Krasko J, Stumbryte A, Liudkeviciene R (2016) Identity, proliferation capacity, genomic stability and novel senescence markers of mesenchymal stem cells isolated from low volume of human bone marrow. Oncotarget 7(10):10788–10802. https://doi.org/10.18632/oncotarget.7456

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lucchini G, Introna MM, Dander ME (2010) Platelet-lysate expanded mesenchymal stromal cells as salvage therapy for severe resistant graft-versus-host-disease in a pediatric population. Biol Blood Marrow Transplantat 6:1293–1301

    Article  Google Scholar 

  25. Dominici M, Blanc KL, Mueller I, Slaper-Cortenbach I, Marini C, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cryotherapy 8(4):315–317. https://doi.org/10.1080/14653240600855905

    Article  CAS  Google Scholar 

  26. Li J, Ezzelarab MB, Ayares D, Cooper DKC (2014) The potential role of genetically-modified pig mesenchymal stromal cells in xenotransplatation. Stem Cell Rev 10(1):79–85. https://doi.org/10.1007/s12015-013-9478-8

    Article  CAS  PubMed Central  Google Scholar 

  27. Vacanti V, Kong E, Suzuki G, Sato K, Canty JM, Lee T (2005) Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. J Cell Physiol 205:194–201. https://doi.org/10.1002/jcp.20376

    Article  CAS  PubMed  Google Scholar 

  28. Pilz GA, Braun J, Ulrich C, Felka T, Warstat K, Ruh M, Schewe B, Abele H, Larbi A, Aicher WK (2011) Human mesenchymal stromal cells express CD14 cross-reactive epitopes. Cytometry Part A 79(8):635–645. https://doi.org/10.1002/cyto.a.21073

    Article  CAS  Google Scholar 

  29. Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF (2000) Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275:9645–9652. https://doi.org/10.1074/jbc.275.13.9645

    Article  CAS  PubMed  Google Scholar 

  30. Ringe J, Kaps C, Schmitt B, Biischer K, Bartel J, Smolian H, Schultz O, Burmester GR, Häupl T, Sittinger M (2002) Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. Cell Tissue Res 307:321–327. https://doi.org/10.1007/s00441-002-0525

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding of DST-WOSA to the first author, facilities extended by the Director ICAR-NIANP and the support and help of the colleagues and contractual workers of other projects is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotirmoy Ghosh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest to publish this manuscript.

Additional information

Significance statement Study proved that plating bone marrow cells directly to plastic surface is best for MSC derivation in porcine being easy, straightforward, fast and inexpensive method compared to the plating after RBC lysis. Method is also suitable for other species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, S., Dhara, S.K. & Ghosh, J. Porcine Mesenchymal Stem Cell Derivation by Plating Bone Marrow Cells Directly and After Erythrocyte Lysis. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 89, 565–573 (2019). https://doi.org/10.1007/s40011-018-0966-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-018-0966-0

Keywords

Navigation