Advertisement

Evolutionary and Structural Analyses of Toll-Like Receptors 7 and 8 of Himalayan Kumaon Cattle and Goat

  • Muniswamy Kangayan
  • Shanmugam ChandraSekar
  • Barathidasan Rajamani
  • Ajay Kumar
Research Article

Abstract

Toll-like receptors (TLRs) are pattern recognition receptors that are critical for the functions of the host innate immunity. This study reports complete coding sequences of TLR-7 and TLR-8 of cattle and goat of Himalayan Kumaon (HK) region. Further, predicted 26 leucine rich repeats (LRRs), two terminal LRR modules and putative common and differential ligand binding amino acids in TLR-7 and -8 of ruminants. The differential ligand binding amino acids between TLR-7 and TLR-8 of HK-cattle were Val396, Arg422, Val513, Asp538 and Val566 in TLR-8; Thr406, Lys432, Thr533, Leu558 and Ile586 in TLR-7. Codon selection analysis revealed co-localization of positively selected codons 377 and 408 of cattle, and 402 and 859 of goat with already reported SNPs in ruminants. The comparative analysis of deduced electrostatic surface potential of the extracellular domain of TLR-7 and -8 resulted in grouping of different species within ruminants.

Keywords

Innate immunity Toll-like receptor-7 Toll-like receptor-8 Leucine rich repeats Positive selection Ligand binding amino acid Phylogenetic analysis 

Notes

Acknowledgements

The authors thank senior colleagues, researchers for necessary support and Indian Council of Agricultural Research (ICAR).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

40011_2017_928_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 kb)
40011_2017_928_MOESM2_ESM.pdf (63 kb)
Supplementary material 2 (PDF 63 kb)
40011_2017_928_MOESM3_ESM.pdf (41 kb)
Supplementary material 3 (PDF 40 kb)
40011_2017_928_MOESM4_ESM.pdf (10 kb)
Supplementary material 4 (PDF 10 kb)
40011_2017_928_MOESM5_ESM.pdf (90 kb)
Supplementary material 5 (PDF 89 kb)
40011_2017_928_MOESM6_ESM.pdf (236 kb)
Supplementary material 6 (PDF 235 kb)
40011_2017_928_MOESM7_ESM.pdf (236 kb)
Supplementary material 7 (PDF 235 kb)
40011_2017_928_MOESM8_ESM.pdf (337 kb)
Supplementary material 8 (PDF 337 kb)
40011_2017_928_MOESM9_ESM.pdf (263 kb)
Supplementary material 9 (PDF 262 kb)
40011_2017_928_MOESM10_ESM.pdf (103 kb)
Supplementary material 10 (PDF 103 kb)
40011_2017_928_MOESM11_ESM.pdf (184 kb)
Supplementary material 11 (PDF 184 kb)
40011_2017_928_MOESM12_ESM.pdf (106 kb)
Supplementary material 12 (PDF 106 kb)
40011_2017_928_MOESM13_ESM.pdf (2.5 mb)
Supplementary material 13 (PDF 2512 kb)
40011_2017_928_MOESM14_ESM.pdf (113 kb)
Supplementary material 14 (PDF 112 kb)

References

  1. 1.
    Medzhitov R, Janeway CA (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91:295–298CrossRefPubMedGoogle Scholar
  2. 2.
    Menzies M, Ingham A (2006) Identification and expression of Toll-like receptors 1–10 in selected bovine and ovine tissues. Vet Immunol Immunopathol 109:23–30CrossRefPubMedGoogle Scholar
  3. 3.
    Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci USA 102:9577–9582CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801CrossRefPubMedGoogle Scholar
  5. 5.
    Leonard JN, Ghirlando R, Askins J, Bell JK, Margulies DH, Davies DR, Segal DM (2008) The TLR3 signaling complex forms by cooperative receptor dimerization. Proc Natl Acad Sci USA 105:258–263CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science (New York, NY) 303:1529–1531CrossRefGoogle Scholar
  7. 7.
    Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science (New York, NY) 303:1526–1529CrossRefGoogle Scholar
  8. 8.
    Bauer S, Kirschning CJ, Hacker H, Redecke V, Hausmann S, Akira S, Wagner H, Lipford GB (2001) Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA 98:9237–9242CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mikami T, Miyashita H, Takatsuka S, Kuroki Y, Matsushima N (2012) Molecular evolution of vertebrate Toll-like receptors: evolutionary rate difference between their leucine-rich repeats and their TIR domains. Gene 503:235–243CrossRefPubMedGoogle Scholar
  10. 10.
    Tanji H, Ohto U, Shibata T, Miyake K, Shimizu T (2013) Structural reorganization of the Toll-like receptor 8 dimer induced by agonistic ligands. Science (New York, NY) 339:1426–1429CrossRefGoogle Scholar
  11. 11.
    Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, Kuroki Y (2007) Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genom 8:124CrossRefGoogle Scholar
  12. 12.
    Tseng CY, Gajewski M, Danani A, Tuszynski JA (2014) Homology and molecular dynamics models of toll-like receptor 7 protein and its dimerization. Chem Biol Drug Des 83:656–665CrossRefPubMedGoogle Scholar
  13. 13.
    Boghdadi G, Hammad N, Amer A, Sammour S, Sorour S (2014) R848, a Toll-like receptors 7 and 8 agonist, a potential therapy for allergic rhinitis patients. Inflamm Allergy Drug Targets 13:144–149CrossRefPubMedGoogle Scholar
  14. 14.
    Petricevic B, Wessner B, Sachet M, Vrbanec D, Spittler A, Bergmann M (2009) CL097, a TLR7/8 ligand, inhibits TLR-4 dependent activation of IRAK-M and BCL-3 expression. Shock (Augusta, Ga) 32:484–490CrossRefGoogle Scholar
  15. 15.
    Spranger S, Javorovic M, Burdek M, Wilde S, Mosetter B, Tippmer S, Bigalke I, Geiger C, Schendel DJ, Frankenberger B (2010) Generation of Th1-polarizing dendritic cells using the TLR7/8 agonist CL075. J Immunol (Baltimore, MD: 1950) 185:738–747CrossRefGoogle Scholar
  16. 16.
    Zhu J, Brownlie R, Liu Q, Babiuk LA, Potter A, Mutwiri GK (2009) Characterization of bovine Toll-like receptor 8: ligand specificity, signaling essential sites and dimerization. Mol Immunol 46:978–990CrossRefPubMedGoogle Scholar
  17. 17.
    Gentile F, Deriu MA, Licandro G, Prunotto A, Danani A, Tuszynski JA (2015) structure based modeling of small molecules binding to the TLR-7 by atomistic level simulations. Molecules 20:8316–8340CrossRefPubMedGoogle Scholar
  18. 18.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Thewissen JG, Cooper LN, Clementz MT, Bajpai S, Tiwari BN (2007) Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450:1190–1194CrossRefPubMedGoogle Scholar
  20. 20.
    Mukherjee S, Sarkar-Roy N, Wagener DK, Majumder PP (2009) Signatures of natural selection are not uniform across genes of innate immune system, but purifying selection is the dominant signature. Proc Natl Acad Sci USA 106:7073–7078CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Barreiro LB, Ben-Ali M, Quach H, Laval G, Patin E, Pickrell JK, Bouchier C, Tichit M, Neyrolles O, Gicquel B et al (2009) Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense. PLoS Genet 5:e1000562CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Areal H, Abrantes J, Esteves PJ (2011) Signatures of positive selection in Toll-like receptor (TLR) genes in mammals. BMC Evol Biol 11:368CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cargill EJ, Womack JE (2007) Detection of polymorphisms in bovine toll-like receptors 3, 7, 8, and 9. Genomics 89:745–755CrossRefPubMedGoogle Scholar
  24. 24.
    Goyal S, Dubey PK, Tripathy K, Mahajan R, Pan S, Dixit SP, Kathiravan P, Mishra BP, Niranjan SK, Kataria RS (2012) Detection of polymorphism and sequence characterization of Toll-like receptor 7 gene of Indian goat revealing close relationship between ruminant species. Anim Biotechnol 23:194–203CrossRefPubMedGoogle Scholar
  25. 25.
    Celniker G, Nimrod G, Ashkenazy H, Glaser F, Martz E, Mayrose I, Pupko T, Ben-Tal N (2013) ConSurf: using evolutionary data to raise testable hypotheses about protein function. Isr J Chem 53:199–206CrossRefGoogle Scholar
  26. 26.
    Gibbard RJ, Morley PJ, Gay NJ (2006) Conserved features in the extracellular domain of human toll-like receptor 8 are essential for pH-dependent signaling. J Biol Chem 281:27503–27511CrossRefPubMedGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2017

Authors and Affiliations

  • Muniswamy Kangayan
    • 1
  • Shanmugam ChandraSekar
    • 2
  • Barathidasan Rajamani
    • 3
  • Ajay Kumar
    • 3
  1. 1.ICAR-Central Island Agricultural Research InstitutePort BlairIndia
  2. 2.Division of VirologyICAR-IVRINainitalIndia
  3. 3.ICAR- Indian Veterinary Research InstituteIzatnagar, BareillyIndia

Personalised recommendations