Skip to main content

Advertisement

Log in

Abstract

Wheat crop has a critical role in current food system and also in the future global food security. Global wheat demand in 2010 reached 666 million metric tons (MMT). If the demand growth rate remains constant, it has been predicted that the global wheat consumption would surpass 880 MMT by 2050. Fulfilling this demand needs new and more efficient wheat breeding methodologies. Conventional breeding has led to the development of number of varieties, but with the changing climatic regime accompanied with fast and continuous changing nature of biotic and abiotic stresses there is an urgent need to fasten the breeding methods. Hence, biotechnological tool like DH becomes an important weapon. The production of haploid plants from hybrids, followed by chromosome doubling will provide wheat breeder with a mean to accelerate the development of true breeding lines. Doubled haploid (DH) populations have lot of applications in plant breeding like cultivar and germplasm development, transferring traits from wild types, studying components of quantitative genetics and whole genome mapping. Among different DH production techniques, anther culture and Hordeum bulbosum have stronger genotypic specificity whereby, wide hybridization comes up with a solution. Amongst various wide hybridization techniques, DH production via Imperata cylindrica has been found to be the most economical and efficient. The genotypic nonspecific production lacks somaclonal variation and albino plants development alongwith having higher regeneration rate coupled with lower cost. Thus, integration of I. cylindrica mediated DH system with conventional breeding will be instrumental for future wheat breeding programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Velu G, Singh RP (2013) Phenotyping in wheat breeding. In: Panguluri SK, Kumar AA (eds) Phenotyping in plant breeding: Applications of Phenotyping methods for Crop Improvement. Springer, New York, pp 41–71

    Chapter  Google Scholar 

  2. Hawkesford MJ, Araus JL, Park R, Calderini D, Miralles D, Shen T, Zhang J, Parry MAJ (2013) Prospects of doubling global wheat yields. Food Energy Secur 2(1):3–48

    Article  Google Scholar 

  3. BSPA (2015) Plant breeding the essential platform for sustainable agriculture. http://www.bspb.co.uk/sg_userfiles/BSPB_%E2%80%93_Plant_Breeding_for_Sustainability.pdf

  4. Vijav KP (2013) By 2050 world wheat demand and supply relate with Indian consumption and price increase- issued in public interest by STB power tech and automation. https://www.linkedin.com/pulse/20140710130826-63376648-by-2050-world-wheat-demand-and-supply-relate-with-indian-consumption-and-price-increase-issued-in-public-interest-by-stb-power-tech-and-and-automation

  5. Adamski T, Krystkowiak K, Kuczynska A, Mikolajczak K, Ogrodowicz P, Ponitka A, Surma M, Aurelia SA (2014) Segregation distortion in homozygous lines obtained via anther culture and maize doubled haploid methods in comparison to single seed descent in wheat (Triticum aestivum. L) Electron. J Biotechnol 17:13

    Google Scholar 

  6. Quisenberry KS, Reitz LP (1967) Wheat and wheat improvement. American Society of Agronomy, Inc., Madison

    Google Scholar 

  7. Fehr WR (1993) Principles of cultivar development: theory and technique, vol 1. Macmillan Publishing Company, Arvada

    Google Scholar 

  8. Folling L, Olesen A (2002) Transformation of wheat (Triticum aestivum L.) microspore-derived callus and microspores by particle bombardment. Plant Cell Rep 20:62–636

    Article  CAS  Google Scholar 

  9. Blakeslee AF, Belling F, Bergner AD (1922) A haploid mutant in Datura Stramonium. Science 16(55):646–647

    Article  Google Scholar 

  10. Guha S, Maheshwari SC (1964) In vitro production of embryos from anther of Datura. Nature 204:497

    Article  Google Scholar 

  11. Baenziger PS, Russell WK, Graef GL, Campbell BT (2006) Improving lives: 50 years of crop breeding, genetics, and cytology. Crop Sci 46:2230–2244

    Article  Google Scholar 

  12. Snape JW, Simpson E, Parker BB (1986) Criteria for the selection and use of dihaploid systems in cereal breeding programmes. In: Horn W, Jensen CJ, Odenbach W, Schieder O (eds) Genetic manipulation in plant breeding. Walter de Gruyter, Berlin, pp 217–229

    Chapter  Google Scholar 

  13. Pauk J, Mihaly R, Puolimatka M (2003) Protocol of wheat (Triticum aestivum L.) anther culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. A manual. Kluwer Academic Publishers, Dortrecht

    Google Scholar 

  14. De Pauw RR, Knox RE, Thomas JB, Humphreys DG, Fox SL, Brown PD (2010) New breeding tools impact Canadian commercial farmer fields. In: 8th international wheat conference, June 1–4 2010, St. Petersburg, Russia

  15. Marone D, Laido G, Gadaleta A, Colasuonno P, Ficco DBM, Giancaspro A (2012) A high-density consensus map of A and B wheat genomes. Theor Appl Genet 125:1619–1638

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hao M, Zhang L, Luo J, Yuan Z, Yan Z, Zhang B (2013) The genetic study utility of a hexaploid wheat DH population with non-recombinant A- and d B-genomes. Springerplus 2:131

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hakki EE, Savaskan C, Akkaya MS (2001) Genotyping of Anatolian doubled-haploid durum lines with SSR markers. Euphytica 122:257–262

    Article  CAS  Google Scholar 

  18. Mihaly R, Lantos C, Kertesz Z, Mesterhazy A, Pauk J (2006) Using of doubled haploids in wheat breeding. In: The international conference “haploids in higher plants III” 12–15 February 2006, Vienna-Austria, p 34

  19. El-Hennawy MA, Abdalla AF, Shafey SA, Al-Ashkar IM (2011) Production of doubled haploid wheat lines (Triticum aestivum L.) using anther culture technique. Ann Agric Sci 56(2):63–72

    Article  Google Scholar 

  20. Chaudhary HK, Sethi GS, Singh S, Pratap A, Sharma S (2005) Efficient haploid induction in wheat by using pollen of Imperata cylindrica. Plant Breed 124:96–98

    Article  Google Scholar 

  21. Niroula RK, Bimb HP, Thapa DB, Sah BP, Nayak S (2007) Production of haploid wheat plants from wheat (Triticum aestivum L.) × maize (Zea mays L.) cross system. Himal J Sci 4(6):65–69

    Google Scholar 

  22. Khan MA, Shaukat S, Ahmad J, Kashif M, Khan AS, Iqbal MZ (2012) Use of intergeneric cross for production of doubled haploid wheat (Triticum aestivum L.). J Sci Technol Dev 31(4):295–300

    Google Scholar 

  23. Bhattacharya A, Palan B, Char B (2015) An insight into wheat haploid production using wheat × maize wide hybridization. J Appl Biol Biotechnol 3(5):44–47

    CAS  Google Scholar 

  24. Mahato A, Chaudhary HK (2015) Relative efficiency of maize and Imperata cylindrica for haploid induction in Triticum durum following chromosome elimination-mediated approach of doubled haploid breeding. Plant Breed 134:379–383

    Article  Google Scholar 

  25. Zhang L, Zhang L, Luo J, Chen W, Hao M, Liu B, Yan Z, Zhang B, Zhang H, Zheng Y, Liu D, Yen Y (2011) Synthesizing double haploid hexaploid wheat populations based on a spontaneous alloploidization process. J Genet Genomics 38:89–94

    Article  PubMed  Google Scholar 

  26. Maheshwari S, Tan EH, West A, Franklin FCH, Comai L, Chan SWL (2015) Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. PLoS Genet 11(1):e1004970. doi:10.1371/journal.pgen.1004970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–618

    Article  CAS  PubMed  Google Scholar 

  28. Dwivedi SL, Britt AB, Tripathi L, Sharma S, Upadhyaya HD, Ortiz R (2015) Haploids: constraints and opportunities in plant breeding. Biotechnol Adv 33:812–829

    Article  PubMed  Google Scholar 

  29. Patel M, Darvey NL, Marshall DR, Berry JO (2004) Optimization of culture conditions for improved plant regeneration efficiency from wheat microspore culture. Euphytica 140:197–204

    Article  CAS  Google Scholar 

  30. Liang GH, Xu A, Tang H (1987) Direct generation of wheat haploids via anther culture. Crop Sci 27:336–339

    Article  Google Scholar 

  31. Barclay IR (1975) High frequencies of haploid production in wheat (Triticum aestivum L.) by chromosome elimination. Nature 256:410–411

    Article  Google Scholar 

  32. Laurie DA, Bennett MD (1987) Wide crosses involving maize (Zea mays). Annu Rep Plant Breed Inst 1986–87:66

    Google Scholar 

  33. Chu CC, Wang CC, Sun CS, Chien NF, Yin KC, Hsu C (1973) Investigations on the induction and morphogenesis of wheat (Triticum aestivum L.) pollen plants. Acta Bot Sin 15:1–11

    Google Scholar 

  34. Ouyang JW, Hu H, Chuang CC, Tsen CC (1973) Induction of pollen plants from anthers of Triticum aestivum L. cultured in vitro. Sci Sin 16:79–95

    Google Scholar 

  35. Picard E, De Buyser J (1973) Obtention de plantules haploids de Triticum aestivum L. a partir de cultures d’antheres in vitro. C R Acad Sci 277:1463–1466

    Google Scholar 

  36. Craig IL (1974) Haploid plants (2n = 21) from in vitro anther culture of Triticum aestivum. Can J Genet Cytol 16:697–700

    Article  Google Scholar 

  37. De Buyser J, Lonnet P, Hertzoc R, Hespel A (1987) “Florin”: doubled haploid wheat variety developed by the anther culture method. Plant Breed 98:53–56

    Article  Google Scholar 

  38. Hu D, Tang Y, Yuan Z, Wang J (1983) The induction of pollen sporophytes of winter wheat and the development of the new variety Jinghua No. 1. Sci Agric Sin 1:29–35

    Google Scholar 

  39. Hu Y, Bao RR, Xue XY (1988) The new strain ‘764’ of spring wheat by pollen haploid technique from anther culture. Genet Manip Crops Newsl 4:70–85

    Google Scholar 

  40. Pauk J, Kertesz Z, Beke B, Bona L, Csosz M, Matuz J (1995) New winter wheat variety: ‘GK Delibab’ developed via combining conventional breeding and in vitro androgenesis. Cereal Res Commun 23:251–256

    Google Scholar 

  41. Tyankova N, Zagorska N, Dimitrov D (2004) Study of drought response in wheat cultivars, stabilized wheat-wheatgrass lines and intergeneric wheat cultivated in vitro. Cereal Res Commun 32(1):9–105

    Google Scholar 

  42. Tawkaz S (2011) Response of some wheat genotypes to anther culture technique for doubled haploid production. M. Sc Thesis. Sudan Academy of Science, Kartum

  43. Almouslem AB, Bommineni VR, Jauhar PP, Peterson TS, Rao MB (1998) Haploid durum wheat production via hybridization with maize. Crop Sci 38:108–1087

    Article  Google Scholar 

  44. Garcia-Llamas C, Ramirez MC, Ballesteros J (2004) Effect of pollinator on haploid production in durum wheat crossed with maize and pearl millet. Plant Breed 123:20–203

    Article  Google Scholar 

  45. Sharma S, Sethi GS, Chaudhary HK (2005) Influence of winter and spring wheat genetic backgrounds on haploid induction parameters and trait correlation in the wheat × maize system. Euphytica 144:19–205

    Article  Google Scholar 

  46. Zamani EG, Kovacs G, Xynias I, Roupakias D, Barnabas B (2003) Effect of parental genotypes and colchicine treatment on the androgenic response of wheat F1 hybrids. Plant Breed 122:31–317

    Article  Google Scholar 

  47. Jauhar PP, Xu SS, Baenziger PS (2009) Haploidy in cultivated wheat: induction and utility in basic and applied research. Crop Sci 49:73–755

    Article  Google Scholar 

  48. Torp AM, Andersen SB (2009) Albinism in microspore culture. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Berlin, pp 15–160

    Google Scholar 

  49. Chen XW, Cistue L, Munoz-Amatriain M, Sanz M, Romagosa I, Castillo AM, Valles MP (2007) Genetic markers for doubled haploid response in barley. Euphytica 158:28–294

    Article  CAS  Google Scholar 

  50. Grosse BA, Deimling S, Geiger HH (1996) Mapping of genes for anther culture ability in rye by molecular markers. Vortr Pflanzenzeuchtg 35:282–283

    Google Scholar 

  51. Gonzalez JM, Muniz LM, Jouve N (2005) Mapping of QTLs for androgenetic response based on a molecular genetic map of Tritico secale Wittmack. Genome 48:99–1009

    Article  Google Scholar 

  52. Krzewska M (2012) Quantitative trait loci associated with androgenic responsiveness in triticale (Triticosecale Wittm.) anther culture. Plant Cell Rep 31:209–2108

    Article  CAS  Google Scholar 

  53. Torp AM, Hansen AL, Andersen SB (2001) Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture. Euphytica 119:37–387

    Article  Google Scholar 

  54. Marsolais AA, Wheatley WG and Kasha KJ (1986) In: DSIR plant breeding symposium, pp 34–343

  55. Lashermes P, Engin G, Ortiz-Ferrara G (1991) Anther culture of wheat (Triticum aestivum) adapted to dry areas of West Asia and North African. J Genet Breed 45:33–38

    Google Scholar 

  56. Lashermes P (1992) Improved anther culture method for obtaining direct regeneration in wheat (Triticum aestivum L.). J Genet Plant Breed 46:99–102

    Google Scholar 

  57. Alvarez W (1992) Improvement of wheat (Triticum aestivum L.) anther culture methods for doubled haploid plant production. ETD collection for University of Nebraska—Lincoln. Paper AAI9308190

  58. Trottier MC, Collin J, Comeau A (1993) Comparison of media for their aptitude in wheat anther culture. Plant Cell Tissue Organ Cult 35(1):59–67

    Article  CAS  Google Scholar 

  59. Masojc P, Lukow OM, McKenzie RIH, Howes NK (1993) Responsiveness to anther culture in cultivars and F1 crosses of spring wheat. Can J Plant Sci 73(3):777–783

    Article  Google Scholar 

  60. Alvarez WN, Baenziger PS, Eskridge KM, Hugo M, Gustafson VD (1994) Addition of colchicine to wheat anther culture media to increase doubled haploid plant production. Plant Breed 112(3):192–198

    Article  Google Scholar 

  61. Sadasivaiah RS, Orshinsky BR, Korzub G (1999) Production of wheat haploids using anther culture and wheat × maize hybridization technique. Cereal Res Commun 27:33–40

    Google Scholar 

  62. Kim KM, Baenziger PS (2005) A simple wheat haploid and doubled haploid production system using anther culture. In Vitro Cell Dev Biol Plant 41(1):22–27

    Article  Google Scholar 

  63. Khiabani BN, Vedadi C, Rahmani E, Shalmani MAM (2008) Response of some Iranian wheat genotypes to anther culture system. Indian J Biotechnol 7:531–535

    Google Scholar 

  64. Lantos C, Weyen J, Orsini JM, Gnad H, Schlieter B, Lein V, Kontowski S, Jacobi A, MihAly R, Broughton S, Pauk J (2013) Efficient application of in vitro anther culture for different European winter wheat (Triticum aestivum L.) breeding programmes. Plant Breed 132(2):149–154

    Article  Google Scholar 

  65. Castillo AM, Sanchez-Diaz RA, Valles MP (2015) Effect of ovary induction on bread wheat anther culture: ovary genotype and developmental stage, and candidate gene association. Front Plant Sci 18(6):40

    Google Scholar 

  66. Bueno MA, Pintos B, Hofer M, Martin A (2005) Pro-embryos induction from Olea europaea L. isolated microspore culture. Acta Physiol Plant 27:695–701

    Article  Google Scholar 

  67. Bueno MA, Pintos B, Martin A (2006) Induction of embryogenesis via isolated microspore culture in Olea europaea L. Olivebioteq 1:9–25

    Google Scholar 

  68. Weyen J (2009) Barley and wheat doubled haploids in breeding. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Kluwer Academic Publishers, Dordrecht, pp 179–187

    Chapter  Google Scholar 

  69. Datta SK (2005) Androgenic haploids: factors controlling development and its application in crop improvement. Curr Sci 89:1870–1878

    CAS  Google Scholar 

  70. Turasheva SK (2015) Production of wheat doubled haploids by in vitro anther culture. Int J Biol Chem 8(1):21–25

    Article  Google Scholar 

  71. Bhojwani SS, Razdan MK (1996) Plant tissue culture: theory and practice. Elsevier, Amsterdam, p 766

    Google Scholar 

  72. Liu WG, Zheng MY, Polle E, Konzak CF (2002) highly efficient doubled-haploid production in wheat (Triticum aestivum L.) via induced microspore embryogenesis. Crop Sci 42:686–692

    Article  Google Scholar 

  73. Slama-Ayed O, Buyser DJ, Picard E, Trifa Y, Amara HS (2010) Effect of pre-treatment on isolated microspores culture ability in durum wheat (Triticum turgidum subsp. Durum Desf). J Plant Breed Crop Sci 2:30–38

    CAS  Google Scholar 

  74. Labbani Z, De Buyser J, Picard E (2007) Effect of mannitol pretreatment to improve green plant regeneration on isolated microspore culture in Triticum turgidum ssp. durum cultivars. Plant Breed 126:565–568

    Article  CAS  Google Scholar 

  75. Shirdelmoghanloo H, Moieni A, Mousavi A (2009) Effects of embryo induction media and pretreatments in isolated microspore culture of hexaploid wheat (Triticum aestivum L. cv. Falat). Afr J Biotech 8(22):6134–6140

    Article  CAS  Google Scholar 

  76. Chiancone B, Marines M, Karasawa G, Ahmed GV, Abdelgalel M, Barany I, Testillano PS, Marinoni DT, Botta R, Germana MA (2015) Early embryo achievement through isolated microspore culture in Citrus clementina Hort. ex Tan., cvs. ‘Monreal Rosso’ and ‘Nules’. Front Plant Sci 6(413):1–10

    Google Scholar 

  77. Murovec J, Bohanec B (2012) Haploids and doubled haploids in plant breeding. In: Abdurakhmonov I (ed) Plant breeding. Tech Europe, Croatia, pp 87–106

    Google Scholar 

  78. Grauda D, Lepse N, Strazdina V, Kokina I, Lapina L, Mikelsone A (2010) Obtaining of doubled haploid lines by anther culture method for the Latvian wheat breeding. Agron Res 8:545–552

    Google Scholar 

  79. Santra M, Ankrah N, Santra DK, Kidwell KK (2012) An improved wheat microspore culture technique for the production of doubled haploid plants. Crop Sci 52:2314–2320

    Article  Google Scholar 

  80. Zheng MY, Liu W, Weng Y, Polle E, Konzak CF (2003) Production of doubled haploids in wheat (Triticum aestivum L.) through microspore embryogenesis triggered by inducer chemicals. In: Maluszynski M, Kasha K, Forster BP, Szarejko I (eds) Doubled haploids production in crop plants, a manual, Chapter 2. Kluwer Academic Publisher, Dordrecht, pp 83–94

    Chapter  Google Scholar 

  81. Campbell AW, Griffin WB, Conner AJ, Rowarth JS, Burritt DJ (1998) The effects of temperature and light intensity on embryo numbers in wheat doubled haploid production through wheat × maize crosses. Ann Bot 82:29–33

    Article  Google Scholar 

  82. Jones AM, Petolino JF (1987) Effects of donor plant genotype and growth environment on anther culture of soft-red winter wheat (Triticum aestivum L.). Plant Cell Tissue Organ Cult 8(3):215–223

    Article  Google Scholar 

  83. Simmonds J (1989) Improved androgenesis of winter cultivars of Triticum aestivum L., in response to low temperature treatment of donor plants. Plant Sci 65:225–231

    Article  Google Scholar 

  84. Chu CC, Hill RD, Brule-Babel L (1990) High frequency of pollen embryoid formation and plant regeneration in Triticum aestivum L. on monosaccharide containing media. Plant Sci 66:255–262

    Article  CAS  Google Scholar 

  85. Grauda D, Milelsone A, Lisina N, Pagata K, Ornicans R, Fokina O, Lapioa L, Rashal I (2014) Anther culture effectiveness in producing doubled haploids of cereals. In: Proceedings of the Latvian Academy of Sciences, pp 142–147

  86. Laurie DA, Bennett MD (1986) Wheat × maize hybridization. Can J Genet Cytol 28(2):313–316

    Article  Google Scholar 

  87. Laurie DA, Bennett MD (1988) The production of haploid wheat plants from wheat × maize crosses. Theor Appl Genet 76(3):393–397

    Article  CAS  PubMed  Google Scholar 

  88. Suenaga K (1994) Doubled haploid system using the intergeneric crosses between wheat (Triticum aestivum) and maize (Zea mays). Bull Natl Inst Agrobiol Res 9:83–139

    CAS  Google Scholar 

  89. Kisana NS, Nkongolo KK, Quick JS, Johnson DL (1993) Production of doubled haploids by anther culture and wheat × maize method in a wheat breeding programme. Plant Breed 110:96–102

    Article  Google Scholar 

  90. Giura A (2007) The use of biotechnological Zea system in wheat genetics and breeding at NARDI Fundulea. An. INCDA Fundulea, LXXIVOmagial, pp 179–182

  91. Ahmad F, Comeau A (1990) Wheat × pearl millet hybridization: consequence and potential. Euphytica 50:181–190

    Article  Google Scholar 

  92. Riera-Lizarazu O, Kazi MA (1993) Polyhaploid production in the Triticeae: wheat × Tripsacum crosses. Crop Sci 33:973–976

    Article  Google Scholar 

  93. Suenaga K, Moreshedi AR, Darvey NL (1998) Evaluation of teosinte lines as pollen parents from wheat haploid production. Cereal Res Commun 26:119–125

    Google Scholar 

  94. Mochida K, Tsujimoto H (2001) Production of wheat doubled haploids by pollination with Job’s tears (Coixlachry-ma jobi L.). J Hered 92:81–83

    Article  CAS  PubMed  Google Scholar 

  95. Falk DE, Kasha KJ (1981) Comparison of the crossability of rye (Secale cereal) and H. bulbosum into wheat (Triticum aestivum). Can J Genet Cytol 23:81–88

    Article  Google Scholar 

  96. Ohkawa Y, Suenaga K, Ogawa T (1992) Production of haploid wheat plants through pollination of sorghum pollen. Jpn J Breed 42:891–894

    Article  Google Scholar 

  97. Wang JL, Sun JS, Lu TG, Fang R, Cui HR, Cheng SZ, Yang C (1991) Fertilization and embryo development in wheat × maize crosses. Acta Bot Sin 33(6):674–679

    Google Scholar 

  98. Inagaki MN, Nagamine T, Kazi AM (1997) Use of pollen storage and detached-tiller culture in wheat polyhaploid production through wide crosses. Cereal Res Commun 25:7–13

    CAS  Google Scholar 

  99. Zenkteler M, Nitzsche W (1984) Wide hybridization experiments in cereals. Theor Appl Genet 68:311–315

    Article  CAS  PubMed  Google Scholar 

  100. Comeau A, Plourde A, Pierre CA, Nadeau P (1988) Production of doubled haploid wheat lines by wheat × maize hybridization. Genome Suppl 1:35

    Google Scholar 

  101. Laurie DA, Bennett MD (1989) The timing of chromosome elimination in hexaploid wheat × maize crosses. Genome 32:953–961

    Article  Google Scholar 

  102. Bitsch C, Groger S, Lelley T (1998) Effect of parental genotypes on haploid embryo and plantlet formation in wheat × maize crosses. Euphytica 103:319–323

    Article  Google Scholar 

  103. Suenaga K, Nakajima N (1989) Efficient production of haploid wheat (Triticum aestivum) through crosses between Japanese wheat and maize (Zea mays). Plant Cell Rep 8:263–266

    Article  CAS  PubMed  Google Scholar 

  104. Laurie DA, Reymondie S (1991) High frequencies of fertilisation and haploid seedling production in crosses between commercial hexaploid wheat varieties and maize. Plant Breed 106:182–189

    Article  Google Scholar 

  105. Verma V, Bains NS, Mangat GS, Nanda GS, Gosal SS, Singh K (1999) Maize genotypes show striking differences for induction and regeneration of haploid wheat embryos in the whet × maize systems. Crop Sci 39:1722–1727

    Article  Google Scholar 

  106. Sitch LA, Snape JW (1986) Doubled haploid production in winter wheat and triticale genotypes, using the Hordeum bulbosum system. Euphytica 35:1045–1051

    Article  Google Scholar 

  107. Oury FX, Pichon M, Rousset M (1993) A comparison of two haploidization methods in bread wheat: anther culture and interspecific hybridization with maize. Agronomy 13:95–103

    Article  Google Scholar 

  108. Morshedi AR, Darvey NL (1995) High frequency of embryos in wheat × maize crosses. SABRAO J 27:17–22

    Google Scholar 

  109. Inagaki M, Tahir M (1990) Comparison of haploid production frequencies in wheat varieties crossed with Hordeum bulbosum L. and maize. Jpn J Breed 40:209–216

    Article  Google Scholar 

  110. Robertson LD, Curtis BC (1967) Germination of immature kernels of winter wheat. Crop Sci 7:269–270

    Article  Google Scholar 

  111. Mukade K, Kamio M, Hosoda K (1973) The acceleration of generation advancement in breeding rust-resistant wheat. In: Sears ER, Sears LMS, Proceedings of the 4th international wheat breeding genetics symposium Missouri Agric. Exp., Columbia. University of Missouri, Missouri, pp 439–444

  112. De Pauw RM, Clarke M (1976) Acceleration of generation advancement in spring wheat. Euphytica 25:415–418

    Article  Google Scholar 

  113. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Phys Plant 15:473–497

    Article  CAS  Google Scholar 

  114. Gamborg OL, Miner RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  115. Pratap A, Sethi GS, Chaudhary HK (2005) Relative efficiency of different Gramineae genera for haploid induction in triticale and triticale × wheat hybrids through the chromosome elimination technique. Plant Breed 124:147–153

    Article  Google Scholar 

  116. Moradi P, Haghnazari A, Bozorgipour R, Sharma B (2009) Development of yellow rust resistant doubled haploid lines of wheat through wheat × maize crosses. Int J Plant Prod 3:77–88

    Google Scholar 

  117. Dhiman R, Rana V, Chaudhary HK (2012) Himalayan maize- potential pollen source for maize mediated system of chromosome elimination approach in DH breeding of bread wheat. Cereal Res Commun 40:246–255

    Article  Google Scholar 

  118. Inagaki MN, Mujeeb-Kazi A (1995) Comparison of polyhaploid production frequencies in crosses of hexaploid wheat with maize, pearl millet and sorghum. Breed Sci 45:157–161

    Google Scholar 

  119. Chaudhary HK, Singh S, Sethi GS (2002) Interactive influence of wheat and maize genotypes on haploid induction in winter × spring wheat hybrids. J Genet Breed 56(1):259–266

    Google Scholar 

  120. Inagaki MN, Tahir M (1991) Efficient production of wheat haploids through intergeneric crosses. TARC Newsl Trop Agric Res Cent 2(1):4

    Google Scholar 

  121. Sun JS, Lin H, Lu TS, Wang XA, Ren Z, Wing JL, Fang R, Yang C (1992) The production of haploid wheat plants via wheat × maize hybridization. Acta Bot Sin 34(7):817–821

    Google Scholar 

  122. Kasha KJ, Yao Q, Sinion E, Hu T, Oro R (1995) Production and application of doubled haploids in crops. In: Induced mutations and molecular techniques for crop improvement proceedings, Vienna, Austria, pp 23–27

  123. Matzk F, Mahn A (1994) Improved techniques for haploid production in wheat using chromosome elimination. Plant Breed 113:125–129

    Article  Google Scholar 

  124. Jie X, Snape JW (1987) Crossability of barley varieties with diploid and tetraploid clones of Hordeum bulbosum. Barley Genet Newsl 17:40–42

    Google Scholar 

  125. Bozorgipour R, Snape JW (1991) The assessment of in vitro characters and their influence on the success rates of doubled haploid production in barley. Euphytica 58:137–144

    Article  Google Scholar 

  126. Khan MA, Kashif M, Ahmad J, Khan AS, Khaliq I, Fatima B, Shaukat S (2014) Sadaf-a potential donor for enhancing frequency of doubled haploids in wheat × maize crossing system. Pak J Agric Sci 51(2):353–357

    Google Scholar 

  127. Lefebvre D, Devaux P (1996) Doubled haploids of wheat from wheat × maize crosses:genotypic influence, fertility and inheritance of the 1BL–1RS chromosome. Theor Appl Genet 93(8):1267–1273

    Article  CAS  PubMed  Google Scholar 

  128. Wedzony M, Marcinska I, Ponitka A, Slusarkiewicz-Jarzina A, Wozna J (1998) Production of doubled haploids in triticale by means of crosses with maize (Zea mays L.) using picloram and dicamba. Plant Breed 117(3):211–215

    Article  CAS  Google Scholar 

  129. Mihailescu A, Giura A (1998) Evaluation of pollinators (Zea mays L. and Hordeum bulbosum L.) for wheat and barley haploid production. Research Institute for Cereals and Industrial Crops, 8264 Fundulea, Calarai County, Romania Romanian Agricultural Research Number 9–10/1998

  130. Khan MA, Ahmad J (2011) In vitro wheat haploid embryo production by wheat × maize cross system under different environmental conditions. Pak J Agric Sci 48(1):49–53

    Google Scholar 

  131. Hussain B, Khan MA, Ali Q, Shaukat S (2012) Double haploid production in wheat through microspore culture and wheat × maize crossing system: an overview. Int J Agro Vet Med Sci 6(5):332–344

    Google Scholar 

  132. Komeda N, Chaudhary HK, Suzuki G, Mukai Y (2007) Cytological evidence for chromosome elimination in wheat × Imperata cylindrica hybrids. Genes Genet Syst 82:241–248

    Article  PubMed  Google Scholar 

  133. Chaudhary HK (2007) Dynamics of doubled haploidy breeding and molecular cytogenetic approaches vis-a-vis genetic upgradation of bread wheat for organic and low input farming systems in north-western Himalayas. In: Proceedings of the EUCARPIA symposium on organic and sustainable, low-input agriculture with genotype × environment interactions, Wageningen, The Netherlands, 7–9 Nov 2007, p 54

  134. Chaudhary HK (2008) Dynamics of wheat Imperata cylindrica-a new chromosome elimination mediated system for efficient haploid induction in wheat. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P, 11th international wheat genetics symposium, University of Sydney Press, Australia, vol 2, pp 647–650

  135. Chaudhary HK (2010) New frontiers in DH breeding: dynamics of wheat × Imperata cylindrica system of chromosome elimination- mediated approach of DH production for striking success in alien introgression endeavours in bread wheat. In: Proceedings eucarpia cereal section meeting: innovations in cereal breeding, Cambridge, England, 6–7 April 2010, p 73

  136. Kishore N, Chaudhary HK, Chahota RK, Kumar V, Sood SP, Jeberson S, Tayeng T (2011) Relative efficiency of the maize and Imperata cylindrica-mediated chromosome elimination approaches for induction of haploids of wheat-rye derivatives. Plant Breed 130:192–194

    Article  Google Scholar 

  137. Chaudhary HK, Tayeng T, Kaila V, Rather SA (2013) Enhancing the efficiency of wide hybridization mediated chromosome engineering for high precision crop improvement with special reference to wheat × Imperata cylindrica system. The Nucl 56(1):7–14

    Article  Google Scholar 

  138. Badiyal A, Chaudhary HK, Jamwal NS, Hussain W, Mahato A, Bhatt AK (2014) Interactive genotypic influence of triticale and wheat on their crossability and haploid induction under varied agroclimatic regimes. Cereal Res Commun 42:700–709

    Article  Google Scholar 

  139. Patial M, Pal D, Kumar J, Chaudhary HK (2015) Doubled haploid production in wheat using Imperata cylindrica mediated chromosome elimination technique. World Acad Sci Eng Technol 3(2):1

    Google Scholar 

  140. Patial M, Pal D, Kumar J, Chaudhary HK (2015) Doubled haploid production in wheat via Imperata cylindrica mediated chromosome elimination approach. Int J Trop Agric 33:3333–3335

    Google Scholar 

  141. Rather SA, Chaudhary HK, Kaila V (2013) proportional contribution and potential of maternal and paternal genotypes for polyhaploid induction in wheat × Imperata cylindrica chromosome elimination approach. Cereal Res Commun 42:19–26

    Article  Google Scholar 

  142. Celiktas N, Tiryakioglu M, Can E, Kutlay D, Hatipoglu R (2015) Production of dihaploids in durum wheat using Imperata cylindrica L. mediated chromosome elimination. Turk J Agric For 39:48–54

    Article  CAS  Google Scholar 

  143. Chaudhary HK, Badiyala A, Jamwal NS (2015) New frontiers in doubled haploidy breeding in wheat. Agric Res J 52(4):1–12

    Article  Google Scholar 

  144. DePauw RM, Knox RE, Humphreys DG, Thomas JB, Fox SL, Brown PD (2011) New breeding tools impact Canadian commercial farmer fields. Czech J Genet Plant Breed 47:S28–S34

    Article  CAS  Google Scholar 

  145. DePauw RM, Townley-Smith TF, Humphreys G (2005) Lillian hard red spring wheat. Can J Plant Sci 85:397–401

    Article  Google Scholar 

  146. Saulescu N, Ittu G, Giura A, Mustaţea P, Ittu M (2012) Results of using Zea method for doubled haploid production in wheat breeding at NARDI Fundulea, Romania. Rom. Agric. Res. 29. http://www.incda-fundulea.ro/rar/nr29/rar29.1.pdf

  147. Barkley A, Chumley FG (2012) A doubled haploid laboratory for Kansas wheat breeding: an economic analysis of biotechnology adoption. Int Food Agribus Manag Rev 15:99–119

    Google Scholar 

  148. Bentolila S, Hardy T, Guitton C, Freyssient G (1992) Comparative genetic analysis of F2 plants and anther culture derived plants of maize. Genome 35:575–582

    Article  Google Scholar 

  149. Reif JC, Hamrit S, Heckenberger M, Schipprack W, Peter Maurer H (2005) Genetic structure and diversity of European flint maize populations determined with SSR analyses of individuals and bulks. Theor Appl Genet 111:906–913

    Article  CAS  PubMed  Google Scholar 

  150. Saba M, Julian T, Beata S, Andy T, Fahimeh S, Zed R, Hossein K, Haydn K, Mamoru O, Peter L (2016) Genetic basis for variation in wheat grain yield in response to varying nitrogen application. PLoS ONE 11(7):e0159374. doi:10.1371/journal.pone.0159374

    Article  CAS  Google Scholar 

  151. Fowler DB, Diaye AN, Laudencia-Chingcuanco D (2016) Pozniak CJ (2016), Quantitative Trait Loci associated with phenological development, low-temperature tolerance, grain quality, and agronomic characters in wheat (Triticum aestivum L.). PLoS ONE 11(3):e0152185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Singh A, Knox RE, DePauw RM, Singh AK, Cuthbert RD, Kumar S, Campbell HL (2016) Genetic mapping of common bunt resistance and plant height QTL in wheat. Theor Appl Genet 129(2):243–256

    Article  CAS  PubMed  Google Scholar 

  153. Babiker EM, Gordon TC, Chao S, Rouse MN, Wanyera R, Newcomb M, Brown-Guedira G, Pretorius ZA, Bonman JM (2016) Genetic mapping of resistance to the Ug99 race group of Puccinia graminis f. sp. tritici in a spring wheat landrace CItr 4311. doi:10.1007/s00122-016-2764-5

  154. Dracatos PM, Zhang P, Park RF, McIntosh RA, Wellings CR (2016) Complementary resistance genes in wheat selection ‘Avocet R’ confer resistance to stripe rust. Theor Appl Genet 129:65–76

    Article  CAS  PubMed  Google Scholar 

  155. Gordon A, Basler R, Bansept-Basler P, Fanstone V, Harinarayan L, Grant PK, Birchmore R, Bayles RA, Boyd LA, Osullivan DM (2015) The identification of QTL controlling Ergot sclerotia size in hexaploid wheat implicates a role for the Rht dwarfing alleles. Theor Appl Genet 128:2447–2460

    Article  CAS  PubMed  Google Scholar 

  156. Yang ZP, Gilbert J, Somers DJ, Fedak G, Procunier JD, McKenzie IH (2003) Marker assisted selection of Fusarium head blight resistance genes in two double haploid populations of wheat. Mol Breed 12:309–317

    Article  CAS  Google Scholar 

  157. Hiebert CW, Kassa MT, McCartney CA, You F, Fobert P, Fetch TG (2016) Genetics and mapping of seedling resistance to Ug99 stem rust in winter wheat cultivar Triumph 64 and differentistion of SrTmp, SrCad and Sr42. Theor Appl Genet. doi:10.1007/s00122-016-2765

    Article  PubMed  Google Scholar 

  158. Bakhtiar F, Afshari F, Najafian G, Mohammadi M (2014) Backcross breeding and double-haploid facilitated introgression of stripe rust resistance in bread wheat. Arch Phytopathol Plant Prot 47:1675–1685

    Article  Google Scholar 

  159. Chauhan H, Khurana P (2011) Use of doubled haploid technology for development of stable drought tolerant bread wheat (Triticum aestivum L.) transgenics. Plant Biotechnol J 9(3):408–417

    Article  CAS  PubMed  Google Scholar 

  160. Han H (1988) Wheat: improvement through anther culture Biotechnology in agriculture and forestry 2 by Bajaj YPS, vol 2. Springer, Berlin, pp 55–722

    Google Scholar 

  161. Graf RJ, Beres BL, Laroche A (2013) Emerson hard red winter wheat. Can J Plant Sci 93:741–748

    Article  Google Scholar 

  162. Scheeren LP, Caetano RV, Caierao E, Silva MS, Nascimento A, Eichelberger L, Miranda MZ, Brammer SP (2014) BRS 328 - Double haploid bread wheat cultivar. Crop Breeding and Applied Biotechnology 14:65–67

    Article  Google Scholar 

  163. Randhawa HS, Asif M, Pozniak C (2011) Application of molecular markers to wheat breeding in Canada. Plant Breed 132:458–471

    Google Scholar 

  164. Humphreys DG, Townley STF, Czarnecki E (2013) Snowstar hard white spring wheat. Can J Plant Sci 93(1):143–148

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. K.V. Prabhu, JD (R), ICAR-IARI, New Delhi and Dr. H.K. Chaudhary, Head, CSK, Himachal Pradesh Krishi Vishvavidyalaya, Palampur for providing necessary help for initiation of I. cylindrica mediated DH work at ICAR-IARI, Regional Station, Shimla. Funding was provided by Indian Council of Agricultural Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu Patial.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patial, M., Pal, D., Thakur, A. et al. Doubled Haploidy Techniques in Wheat (Triticum aestivum L.): An Overview. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 89, 27–41 (2019). https://doi.org/10.1007/s40011-017-0870-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-017-0870-z

Keywords

Navigation