Skip to main content

Advertisement

Log in

Inter species variations in cultivable endophytic fungal diversity among the tropical seagrasses

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Seagrasses thriving in the marine environment are inhabited with rich endophytic assemblages which are less explored globally. The present study isolated and identified 42 culture dependent endophytic fungi through internal transcribed spacer (ITS1–ITS4) sequences and their phylogenetic placement was ascertained. Among the 42 culturable endophytic fungal isolates, 25 were identified up to species level, 15 to the genera level and 2 to the order level. Fungal taxa were represented by 13 genera (Penicillium, Eupenicillium, Paecilomyces, Aspergillus, Fennellia, Talaromyces, Eurotium, Teratosphaeria, Cladosporium, Alternaria, Cochliobolus, Phialophora and Simplicillium) belonging to the phylum Ascomycota, except Rhizomucor (Seagrass Endophyte—SGE 39) which belonged to Glomeromycota. Of these, 34 were Eurotiomycetes, 4 were Dothideomycetes and 3 were Sordariomycetes. Dothideomycetes are represented mostly by sterile mycelial forms and have only been identified by DNA (Deoxyribonucleic acid) sequence analysis. Penicillium and Aspergillus were encountered more frequently among all the seagrasses. Seven fungal genera namely Eurotium, Eupenicillium, Teratosphaeria, Simplicillium, Cochliobolus, Rhizomucor and Fennelia are reported for the first time as endophytes from seagrasses. The present study reports subtle variations in distribution of endophytic population in the tropical seagrases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Richards W, Brenda LB, John CK, Teri J (2007) Soil microbial communities and extracellular enzyme activity in the New Jersey Pinelands. Soil Biol Biochem 39:2508–2519

    Article  CAS  Google Scholar 

  2. Holler U, Wright AD, Matthee GF, Konig GM, Draeger S, Aust HJ (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104:1354–1765

    Article  CAS  Google Scholar 

  3. Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471

    Article  Google Scholar 

  4. Liu WC, Li CQ, Zhu P, Yang JL, Cheng KD (2010) Phylogenetic diversity of culturable fungi associated with two marine sponges: halicola simulans and Gelliodes carnosa collected from the Hawaiian island coastal waters of the South China sea. Fungal Divers 42:1–15

    Article  Google Scholar 

  5. Littler MM, Littler DS (1998) An undescribed fungal pathogen of reef forming crustose coralline algae discovered in American Somoa. Coral Reefs 17:144

    Article  Google Scholar 

  6. Gardiner SM (2002) Dominant fungi from Australian coral reefs. Fungal Divers 9:105–121

    Google Scholar 

  7. Harvey JBJ, Goff LJ (2010) Genetic covariation of the marine fungal symbiont Haloguignardia irritans (Ascomycota, Pezizomycotina) with its algal hosts Cystoseira and Halidrys (Phaeophyceae, Fucales) along the west coast of North America. Fungal Biol 114:82–95

    Article  PubMed  CAS  Google Scholar 

  8. Suryanarayanan TS, Venkatachalam A, Thirunavukarasu N, Ravishankar JP, Doble M, Geetha V (2010) Internal mycobiota of marine macroalgae from the Tamilnadu coast: distribution, diversity and biotechnological potential. Bot Mar 53:457–468

    Article  Google Scholar 

  9. Petrini O, Carroll GC (1981) Endophytic fungi in foliage of some Cupressaceae in Oregon. Can J Bot 59:629–636

    Article  Google Scholar 

  10. Suryanarayanan TS, Kumaresan V (2000) Endophytic fungi of some halophytes from an estuarine mangrove forest. Mycol Res 104:1465–1467

    Article  Google Scholar 

  11. Cornick J, Standwerth A, Fisher PJ (2005) A preliminary study of fungal endophyte diversity in a stable and declining bed of Spartina anglina Hubbard. Mycologist 19:24–29

    Article  Google Scholar 

  12. Ravikumar S, Kathiresan K (1993) Influence of tannins, amino acids and sugars on fungi of marine halophytes. Mahasagar 26(1):21–25

    CAS  Google Scholar 

  13. Maria GL, Sridhar KR, Raviraja NS (2005) Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. J Agric Technol 1:67–80

    Google Scholar 

  14. Cheng ZS, Tang WC, Xu SL, Sun SF, Huang BY, Yan X, Chen QJ, Lin YC (2008) First report of an endophyte (Diaporthe phaseolorum var. sojae) from Kandelia candel. J For Res 19(4):277–282

    Article  Google Scholar 

  15. Xu CL, Wang YZ, Jin ML, Yang XQ (2009) Preparation, characterization and immunomodulatory activity of selenium-enriched exopolysaccharide produced by bacterium Enterobacter cloacae Z0206. Bioresour Technol 100:2095–2097

    Article  PubMed  CAS  Google Scholar 

  16. Devarajan PT, Suryanarayanan TS, Geetha V (2002) Endophytic fungi associated with the tropical seagrass Halophila ovalis (Hydrocharitaceae). Indian J mar Sci 31:73–74

    Google Scholar 

  17. Sakayaroj J, Preedanon S, Supaphon O, Jones EBG, Phongpaichit S (2010) Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Divers 42:27–45

    Article  Google Scholar 

  18. Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B, Sakayaroj J, Phongpaicht S, Tanaka K, Hairayama K, Jones EBG (2009) Molecular systematic of the marine Dothideomycetes. Stud Mycol 64:155–173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. O’Donnell K, Cigelnik E, Weber NS, Trappe JM (1997) Phylogenetic relationships among ascomycetous truffles and the true and false morels inferred from 18S and 28S ribosomal DNA sequence analysis. Mycologia 89:48–65

    Article  Google Scholar 

  20. Thompson JD, Higgins DG, Gibson TJ, Clustal W (1994) Improving the sensitivity of progressive multiple sequence alignment through sequence weigting, position—specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Tamura K, Peterson D, Peterson N, Steker G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    PubMed  CAS  Google Scholar 

  23. Tajima F, Nei M (1984) Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1:269–285

    PubMed  CAS  Google Scholar 

  24. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York, p 333

    Google Scholar 

  25. Felenstein J (1985) Confidence-limits on phylogenies—an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  26. Huang Y, Zhao J, Zhou L, Wang M, Wang J, Li X, Chen Q (2009) Antimicrobial compounds from the endophytic fungus Fusarium sp. Ppf4 isolated from the medicinal plant Paris polyphylla var. yunnanensis. Nat Prod Commun 4:1455–1458

    PubMed  CAS  Google Scholar 

  27. Buchan A, Newell SY, Moreta JI, Moran MA (2002) Analysis of internal transcribed spacer regions of rRNA genes in fungal communities in a southeastern U.S. salt marsh. Microbiol Ecol 43:329–340

    Article  CAS  Google Scholar 

  28. Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2014) Diversity and antimicrobial activity of endophytic fungi isolated from the seagrass Enhalus acoroides. Indian J Geo Mar Sci 43(5):785–797

    Google Scholar 

  29. Hibbett DS, Binder M, Jf Bischoff, Blackwell M et al (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  30. Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic press, New York

    Google Scholar 

  31. Alva P, McKenzie EHC, Pointing SB, Pena-Muralla R, Hyde KD (2002) Do seagrasses harbour endophytes? In: K.D. Hyde (ed). Fungi in marine environment, Fungal Divers Res Ser 7:167–178

  32. Rodriguez GM (2008) Potential of fungal endophytes from Thalassia testudinum Bank ex K.D. Koenig as producers of bioactive compounds. M.Sc.Thesis, University of Puerto Rico, Puerto Rico

  33. Gunde-Cimerman N, Ramos J, Plemenitas A (2009) Halotolerant and halophilic fungi. Mycol Res 113:1231–1241

    Article  PubMed  CAS  Google Scholar 

  34. Lee SM, Li XF, Jiang H, Cheng JG, Seong S, Choi HD, Son BW (2003) Terreusinone, a novel UV-A protecting dipyrroloquinone from marine algicolous fungus Aspergillus terreus. Terrahedron Lett 44:7707–7710

    Article  CAS  Google Scholar 

  35. Kis-Papo T, Oren A, Wasser SP, Nevo E (2003) Survival of filamentous fungi in hypersaline Dead Sea water. Microbial Ecol 45:183–190

    Article  CAS  Google Scholar 

  36. Kamat T, Rodrigues E, Naik CG (2008) Marine derived fungi as a source of proteases. Indian J Mar Sci 37(3):326–328

    CAS  Google Scholar 

  37. Martin KJ, Rygiewicz PT (2005) Fungal specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Hunter GC, Wingfield BD, Crous PW, Wingfield MJ (2006) A multi-gene phylogeny for species of Mycosphaerella occurring on Eucalyptus leaves. Stud Mycol 55:147–161

    Article  PubMed  PubMed Central  Google Scholar 

  39. Crous PW, Braun U, Schubert K, Groenewald JZ (2007) Delimiting Cladosporium from morphologically similar genera. Stud Mycol 58:33–56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Director and Dean, Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences and the authorities of the Annamalai University for providing the necessary facilities to carry out this work. One of the authors Dr. S. Raja thanks the Space Application Centre for the financial support in the form of fellowship through funded project. The views and contents of the manuscript are of the individual authors and not reflecting the organization they belong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thangaradjou Thirunavukarassu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subrmaniyan, R., Ponnambalam, S. & Thirunavukarassu, T. Inter species variations in cultivable endophytic fungal diversity among the tropical seagrasses. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 88, 849–857 (2018). https://doi.org/10.1007/s40011-016-0817-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-016-0817-9

Keywords

Navigation