A DFT Study of the Electronic, Magnetic and Structural Properties of Rutile VO2


The electronic, magnetic and structural properties of rutile VO2 are investigated by employing density functional theory (DFT). In the high-temperature tetragonal structure (I42/mnm), VO2 is a nonmagnetic metal. All the V-t2g states are partially occupied by the single V 3d electron, which is responsible for the metallic behavior of VO2. The electronic and magnetic properties of rutile VO2 change significantly upon the application of on-site Coulomb interaction U. The system undergoes a first step transition from nonmagnetic metal to a ferromagnetic metallic phase at U = 1 eV. Eventually, VO2 encounters a metal to half-metal transition for U = 2 eV, preserving ferromagnetism in the half-metallic phase. From this study, the polarization of V-3d electrons arising from the electron correlation due to the application of U is accounted for metal to half-metal transition in VO2. The combined effect of pd hybridizations and the anti-ferromagnetic coupling of V and O atoms is responsible for the ferromagnetism of half-metallic VO2. Nevertheless, an insignificant structural distortion is observed across the metal to half-metal transition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Tang H, Levy F, Berger H, Schmid PE (1995) Urbach tail of anataseTiO2. Phys Rev B 52(11):7771–7774

    ADS  Article  Google Scholar 

  2. 2.

    Duzhko V, Timoshenko VY, Koch F, Dittrich T (2001) Photovoltage in nanocrystalline porous TiO2. Phys Rev B 64(7):075204

    ADS  Article  Google Scholar 

  3. 3.

    Korotin MA, Anisimov VI, Khomskii DI, Sawatzky GA (1998) CrO2: a self-doped double exchange ferromagnet. Phys Rev Lett 80(19):4305–4308

    ADS  Article  Google Scholar 

  4. 4.

    Jeng HT, Guo GY (2002) First-principles investigations of the orbital magnetic moments in CrO2. J Appl Phys 92(2):951–957

    ADS  Article  Google Scholar 

  5. 5.

    Biswas S (2018) Charge ordering in the metal-insulator transition of V-doped CrO2 in the rutile structure. J Mol Model 24(5):111

    Article  Google Scholar 

  6. 6.

    Pedder DJ (1976) Silver-ruthenium dioxide contacts. Electrocompon Sci Technol 2(4):259–261

    ADS  Article  Google Scholar 

  7. 7.

    Goel AK, Skorinko G, Pollak FH (1981) Optical properties of single-crystal rutile RuO2 and IrO2 in the range 0.5 to 9.5 eV. Phys Rev B 24(12):7342–7350

    ADS  Article  Google Scholar 

  8. 8.

    Halder NC (1983) Electron tunneling and hopping possibilites in RuO2 thick films. Electrocompon Sci Technol 11(1):21–34

    Article  Google Scholar 

  9. 9.

    Lee SW, Kim YW, Chen H (2001) Electrical properties of Ta-doped SnO thin films prepared by the metal–organic chemical-vapor deposition method. Appl Phys Lett 78(3):350–352

    ADS  Article  Google Scholar 

  10. 10.

    Chopra KL, Major S, Pandya DK (1983) Transparent conductors—a status review. Thin Solid Films 102(1):1–46

    ADS  Article  Google Scholar 

  11. 11.

    Sundaram KB, Bhagavat GK (1983) High-temperature annealing effects on tin oxide films. J Phys D: Appl Phys 16:69–76

    ADS  Article  Google Scholar 

  12. 12.

    Igarashi Y, Tani K, Kasai M, Ahikaga K, Ito T (2000) Submicron ferroelectric capacitors fabricated by chemical mechanical polishing process for high-density ferroelectric memories. Jpn J Appl Phys 39(4B):2083–2086

    ADS  Article  Google Scholar 

  13. 13.

    Galy J, Miehe G (1999) Ab initio structures of (M2) and (M3) VO2 high pressure phases. Solid State Sci 1(6):433–448

    ADS  Article  Google Scholar 

  14. 14.

    Tao Z, Han TRT, Mahanti SD, Duxbury PM, Yuan F, Ruan CY, Wang K, Wu J (2012) Decoupling of structural and electronic phase transitions in VO2. Phys Rev Lett 109(16):166406

    ADS  Article  Google Scholar 

  15. 15.

    Laverock J, Kittiwatanakul S, Zakharov AA, Nilu YR, Chen B, Wolf SA, Lu JW, Smith KE (2014) Direct observation of decoupled structural and electronic transitions and an ambient pressure monocliniclike metallic phase of VO2. Phys Rev Lett 113(21):216402

    ADS  Article  Google Scholar 

  16. 16.

    Park JH, Coy JM, Kasirga TS, Huang C, Fei Z, Hunter S, Cobden DH (2013) Measurement of a solid-state triple point at the metal–insulator transition in VO2. Nature 500:431–434

    ADS  Article  Google Scholar 

  17. 17.

    O’Callahan BT, Jones AC, Park JH, Cobden DH, Atkin JM, Raschke MB (2015) Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2. Nat Commun 6(1):6849

    ADS  Article  Google Scholar 

  18. 18.

    Morin FJ (1959) Oxides which show a metal-to-insulator transition at the neel temperature. Phys Rev Lett 3(1):34

    ADS  Article  Google Scholar 

  19. 19.

    Goodenough JB (1971) The two components of the crystallographic transition in VO2. J Solid State Chem 3(4):490–500

    ADS  Article  Google Scholar 

  20. 20.

    Rao CNR (1989) Transition metal oxides. Annu Rev Phys Chem 40:291–326

    ADS  Article  Google Scholar 

  21. 21.

    Wentzcovitch RM, Schulz WW, Allen PB (1994) VO2: Peierls or Mott–Hubbard? A view from band theory. Phys Rev Lett 72(21):3389–3392

    ADS  Article  Google Scholar 

  22. 22.

    Rice TM, Launois H, Pouget JP (1994) Comment on “VO2: Peierls or Mott–Hubbard? A view from band theory.” Phys Rev Lett 73(22):3042

    ADS  Article  Google Scholar 

  23. 23.

    Yao T, Zhang X, Sun Z, Liu S (2010) Understanding the nature of the kinetic process in a VO2 metal-insulator transition. Phys Rev Lett 105(22):226405

    ADS  Article  Google Scholar 

  24. 24.

    Cocker TL, Titova LV, Fourmaux S, Holloway G, Bandulet HC, Brassard D, Kieffer JC, Khakani MAE, Hegmann FA (2012) Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide. Phys Rev B 85(15):155120

    ADS  Article  Google Scholar 

  25. 25.

    Veenendaal MV (2013) Ultrafast photoinduced insulator-to-metal transitions in vanadium dioxide. Phys Rev B 87(23):235118

    ADS  Article  Google Scholar 

  26. 26.

    Zhou J, Gao Y, Zhang Z, Luo H, Cao C, Chen Z, Dai L, Liu X (2013) VO2 thermochromic smart window for energy savings and generation. Sci Rep 3:3029

    ADS  Article  Google Scholar 

  27. 27.

    Huang W, Yin XG, Huang CP, Wang QJ, Miao TF, Zhu YY (2010) Optical switching of a metamaterial by temperature controlling. Appl Phys Lett 96(26):261908

    ADS  Article  Google Scholar 

  28. 28.

    Driscoll T, Kim HT, Chae BG, Kim BJ, Lee YW, Jokerst NM, Palit S, Smit DR, Ventra MD, Basov DN (2009) Memory metamaterials. Science 325(5947):1518–1521

    ADS  Article  Google Scholar 

  29. 29.

    Li Z, Hu Z, Peng J, Wu C, Yang Y, Feng F, Gao P, Yang J, Xie Y (2014) Ultrahigh infrared photoresponse from core-shell single domain VO2/V2O5 heterostructure in nanobeam. Adv Funct Mater 24(13):1821–1830

    Article  Google Scholar 

  30. 30.

    Yang Z, Ko C, Ramanathan S (2011) Oxide electronics utilizing ultrafast metal-insulator transitions. Annu Rev Mater Res 41(1):337–367

    ADS  Article  Google Scholar 

  31. 31.

    Han YH, Kim KT, Shin HJ, Moon S, Choi IH (2005) Enhanced characteristics of an uncooled microbolometer using vanadium-tungsten oxide as a thermometric material. Appl Phys Lett 86(25):254101

    ADS  Article  Google Scholar 

  32. 32.

    Wu C, Feng F, Xie Y (2013) Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem Soc Rev 42(12):5157–5183

    Article  Google Scholar 

  33. 33.

    Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF (2016) A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy 1(10):16119

    ADS  Article  Google Scholar 

  34. 34.

    Chan CK, Peng H, Twesten RD, Jarausch K, Zhang XF, Cui Y (2007) Completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Lett 7(2):490–495

    ADS  Article  Google Scholar 

  35. 35.

    Senguttuvan P, Han SD, Kim S, Lipson AL, Tepavcevic S, Fister TT, Bloom I, Burrell A, Johnson CS (2016) A high power rechargeable nonaqueous multivalent Zn/V2O5 battery. Adv Energy Mater 6(24):1600826

    Article  Google Scholar 

  36. 36.

    Yan B, Li X, Bai Z, Lin L, Chen G, Song X, Xiong D, Li D, Sun X (2017) Superior sodium storage of novel VO2 nano-microspheres encapsulated into crumpled reduced graphene oxide. J Mater Chem A 5(10):4850–4860

    Article  Google Scholar 

  37. 37.

    Khan Z, Baskar S, Park SO, Park S, Yang J, Lee JH, Song HK, Kim Y, Kwak SK, Ko H (2017) Carambola-shaped VO2 nanostructures: a binder-free air electrode for an aqueous Na–air battery. J Mater Chem A 5(5):2037–2044

    Article  Google Scholar 

  38. 38.

    Xiao B, Sun J, Ruzsinszky A, Perdew JP (2014) Testing the Jacob’s ladder of density functionals for electronic structure and magnetism of rutile VO2. Phys Rev B 90(8):085134

    ADS  Article  Google Scholar 

  39. 39.

    Zheng H, Wagner LK (2015) Computation of the correlated metal-insulator transition in vanadium dioxide from first principles. Phys Rev Lett 114(17):176401

    ADS  Article  Google Scholar 

  40. 40.

    Wang H, Mellan TA, Grau-Crespo R, Schwingenschlögl, (2014) Spin polarization, orbital occupation and band gap opening in vanadium dioxide: the effect of screened Hartree–Fock exchange. Chem Phys Lett 608:126–129

    ADS  Article  Google Scholar 

  41. 41.

    Chen Y, Zhang S, Ke F, Ko C, Lee S, Liu K, Chen B, Ager JW, Jeanloz R, Eyert V, Wu J (2017) Pressure−temperature phase diagram of vanadium dioxide. Nano Lett 17(4):2512

    ADS  Article  Google Scholar 

  42. 42.

    Eyert E (2002) The metal-insulator transitions of VO2: a band theoretical approach. Ann Phys 11(9):650–702

    MATH  Article  Google Scholar 

  43. 43.

    Fu DY, Liu K, Tao T, Lo K, Cheng C, Liu B, Zhang R, Bechtel HA, Wu JQ (2013) Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films. J Appl Phys 113(4):043707

    ADS  Article  Google Scholar 

  44. 44.

    Korotin MA, Skorikov NA, Anisimov VI (2002) Variation of orbital symmetry of the localized 3d1 electron of the V4+ ion upon the metal-insulator transition in VO2. Phys Met Metallogr 94(1):17–23

    Google Scholar 

  45. 45.

    Shin S, Taniguchi M, Fujisawa M, Kanzaki H, Fujimori A, Daimon H, Ueda Y, Kosuge K, Kachi S (1990) Vacuum-ultraviolet reflectance and photoemission studyof the metal-insulator phase transitions in VO2, V6O13 and V2O3. Phys Rev B 41(8):4993–5009

    ADS  Article  Google Scholar 

  46. 46.

    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 864:136

    MathSciNet  Google Scholar 

  47. 47.

    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 1133:140

    MathSciNet  Google Scholar 

  48. 48.

    Anisimov VI, Zaanen V, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44(3):943–954

    ADS  Article  Google Scholar 

  49. 49.

    Liechtenstein AI, Anisimov VI, Zaanen J (1995) Density-functional theory and strong interactions: orbital ordering in Mott–Hubbard insulators. Phys Rev B 52:R5467

    ADS  Article  Google Scholar 

  50. 50.

    Anderson OK (1975) Linear methods in band theory. Phys Rev B 12(8):3060

    ADS  Article  Google Scholar 

  51. 51.

    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244

    ADS  Article  Google Scholar 

  52. 52.

    Anisimov VI, Aryastiawan F, Lichtenstein AI (1997) First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J Phys: Condens Matter 9(4):767

    ADS  Google Scholar 

  53. 53.

    Biswas S (2018) Metal–insulator transition in the high pressure cubic CaF2-type structure of CrO2. Bull Mater Sci 41(2):33

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sarajit Biswas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Biswas, S. A DFT Study of the Electronic, Magnetic and Structural Properties of Rutile VO2. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. (2021). https://doi.org/10.1007/s40010-021-00731-2

Download citation


  • Density functional theory (DFT)
  • Transition metal oxides
  • Rutile
  • Half-metal
  • Coulomb interaction
  • Crystal structure of VO2