Abstract
The electronic, magnetic and structural properties of rutile VO2 are investigated by employing density functional theory (DFT). In the high-temperature tetragonal structure (I42/mnm), VO2 is a nonmagnetic metal. All the V-t2g states are partially occupied by the single V 3d electron, which is responsible for the metallic behavior of VO2. The electronic and magnetic properties of rutile VO2 change significantly upon the application of on-site Coulomb interaction U. The system undergoes a first step transition from nonmagnetic metal to a ferromagnetic metallic phase at U = 1 eV. Eventually, VO2 encounters a metal to half-metal transition for U = 2 eV, preserving ferromagnetism in the half-metallic phase. From this study, the polarization of V-3d electrons arising from the electron correlation due to the application of U is accounted for metal to half-metal transition in VO2. The combined effect of p–d hybridizations and the anti-ferromagnetic coupling of V and O atoms is responsible for the ferromagnetism of half-metallic VO2. Nevertheless, an insignificant structural distortion is observed across the metal to half-metal transition.
This is a preview of subscription content, access via your institution.










References
- 1.
Tang H, Levy F, Berger H, Schmid PE (1995) Urbach tail of anataseTiO2. Phys Rev B 52(11):7771–7774
- 2.
Duzhko V, Timoshenko VY, Koch F, Dittrich T (2001) Photovoltage in nanocrystalline porous TiO2. Phys Rev B 64(7):075204
- 3.
Korotin MA, Anisimov VI, Khomskii DI, Sawatzky GA (1998) CrO2: a self-doped double exchange ferromagnet. Phys Rev Lett 80(19):4305–4308
- 4.
Jeng HT, Guo GY (2002) First-principles investigations of the orbital magnetic moments in CrO2. J Appl Phys 92(2):951–957
- 5.
Biswas S (2018) Charge ordering in the metal-insulator transition of V-doped CrO2 in the rutile structure. J Mol Model 24(5):111
- 6.
Pedder DJ (1976) Silver-ruthenium dioxide contacts. Electrocompon Sci Technol 2(4):259–261
- 7.
Goel AK, Skorinko G, Pollak FH (1981) Optical properties of single-crystal rutile RuO2 and IrO2 in the range 0.5 to 9.5 eV. Phys Rev B 24(12):7342–7350
- 8.
Halder NC (1983) Electron tunneling and hopping possibilites in RuO2 thick films. Electrocompon Sci Technol 11(1):21–34
- 9.
Lee SW, Kim YW, Chen H (2001) Electrical properties of Ta-doped SnO thin films prepared by the metal–organic chemical-vapor deposition method. Appl Phys Lett 78(3):350–352
- 10.
Chopra KL, Major S, Pandya DK (1983) Transparent conductors—a status review. Thin Solid Films 102(1):1–46
- 11.
Sundaram KB, Bhagavat GK (1983) High-temperature annealing effects on tin oxide films. J Phys D: Appl Phys 16:69–76
- 12.
Igarashi Y, Tani K, Kasai M, Ahikaga K, Ito T (2000) Submicron ferroelectric capacitors fabricated by chemical mechanical polishing process for high-density ferroelectric memories. Jpn J Appl Phys 39(4B):2083–2086
- 13.
Galy J, Miehe G (1999) Ab initio structures of (M2) and (M3) VO2 high pressure phases. Solid State Sci 1(6):433–448
- 14.
Tao Z, Han TRT, Mahanti SD, Duxbury PM, Yuan F, Ruan CY, Wang K, Wu J (2012) Decoupling of structural and electronic phase transitions in VO2. Phys Rev Lett 109(16):166406
- 15.
Laverock J, Kittiwatanakul S, Zakharov AA, Nilu YR, Chen B, Wolf SA, Lu JW, Smith KE (2014) Direct observation of decoupled structural and electronic transitions and an ambient pressure monocliniclike metallic phase of VO2. Phys Rev Lett 113(21):216402
- 16.
Park JH, Coy JM, Kasirga TS, Huang C, Fei Z, Hunter S, Cobden DH (2013) Measurement of a solid-state triple point at the metal–insulator transition in VO2. Nature 500:431–434
- 17.
O’Callahan BT, Jones AC, Park JH, Cobden DH, Atkin JM, Raschke MB (2015) Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2. Nat Commun 6(1):6849
- 18.
Morin FJ (1959) Oxides which show a metal-to-insulator transition at the neel temperature. Phys Rev Lett 3(1):34
- 19.
Goodenough JB (1971) The two components of the crystallographic transition in VO2. J Solid State Chem 3(4):490–500
- 20.
Rao CNR (1989) Transition metal oxides. Annu Rev Phys Chem 40:291–326
- 21.
Wentzcovitch RM, Schulz WW, Allen PB (1994) VO2: Peierls or Mott–Hubbard? A view from band theory. Phys Rev Lett 72(21):3389–3392
- 22.
Rice TM, Launois H, Pouget JP (1994) Comment on “VO2: Peierls or Mott–Hubbard? A view from band theory.” Phys Rev Lett 73(22):3042
- 23.
Yao T, Zhang X, Sun Z, Liu S (2010) Understanding the nature of the kinetic process in a VO2 metal-insulator transition. Phys Rev Lett 105(22):226405
- 24.
Cocker TL, Titova LV, Fourmaux S, Holloway G, Bandulet HC, Brassard D, Kieffer JC, Khakani MAE, Hegmann FA (2012) Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide. Phys Rev B 85(15):155120
- 25.
Veenendaal MV (2013) Ultrafast photoinduced insulator-to-metal transitions in vanadium dioxide. Phys Rev B 87(23):235118
- 26.
Zhou J, Gao Y, Zhang Z, Luo H, Cao C, Chen Z, Dai L, Liu X (2013) VO2 thermochromic smart window for energy savings and generation. Sci Rep 3:3029
- 27.
Huang W, Yin XG, Huang CP, Wang QJ, Miao TF, Zhu YY (2010) Optical switching of a metamaterial by temperature controlling. Appl Phys Lett 96(26):261908
- 28.
Driscoll T, Kim HT, Chae BG, Kim BJ, Lee YW, Jokerst NM, Palit S, Smit DR, Ventra MD, Basov DN (2009) Memory metamaterials. Science 325(5947):1518–1521
- 29.
Li Z, Hu Z, Peng J, Wu C, Yang Y, Feng F, Gao P, Yang J, Xie Y (2014) Ultrahigh infrared photoresponse from core-shell single domain VO2/V2O5 heterostructure in nanobeam. Adv Funct Mater 24(13):1821–1830
- 30.
Yang Z, Ko C, Ramanathan S (2011) Oxide electronics utilizing ultrafast metal-insulator transitions. Annu Rev Mater Res 41(1):337–367
- 31.
Han YH, Kim KT, Shin HJ, Moon S, Choi IH (2005) Enhanced characteristics of an uncooled microbolometer using vanadium-tungsten oxide as a thermometric material. Appl Phys Lett 86(25):254101
- 32.
Wu C, Feng F, Xie Y (2013) Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem Soc Rev 42(12):5157–5183
- 33.
Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF (2016) A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy 1(10):16119
- 34.
Chan CK, Peng H, Twesten RD, Jarausch K, Zhang XF, Cui Y (2007) Completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Lett 7(2):490–495
- 35.
Senguttuvan P, Han SD, Kim S, Lipson AL, Tepavcevic S, Fister TT, Bloom I, Burrell A, Johnson CS (2016) A high power rechargeable nonaqueous multivalent Zn/V2O5 battery. Adv Energy Mater 6(24):1600826
- 36.
Yan B, Li X, Bai Z, Lin L, Chen G, Song X, Xiong D, Li D, Sun X (2017) Superior sodium storage of novel VO2 nano-microspheres encapsulated into crumpled reduced graphene oxide. J Mater Chem A 5(10):4850–4860
- 37.
Khan Z, Baskar S, Park SO, Park S, Yang J, Lee JH, Song HK, Kim Y, Kwak SK, Ko H (2017) Carambola-shaped VO2 nanostructures: a binder-free air electrode for an aqueous Na–air battery. J Mater Chem A 5(5):2037–2044
- 38.
Xiao B, Sun J, Ruzsinszky A, Perdew JP (2014) Testing the Jacob’s ladder of density functionals for electronic structure and magnetism of rutile VO2. Phys Rev B 90(8):085134
- 39.
Zheng H, Wagner LK (2015) Computation of the correlated metal-insulator transition in vanadium dioxide from first principles. Phys Rev Lett 114(17):176401
- 40.
Wang H, Mellan TA, Grau-Crespo R, Schwingenschlögl, (2014) Spin polarization, orbital occupation and band gap opening in vanadium dioxide: the effect of screened Hartree–Fock exchange. Chem Phys Lett 608:126–129
- 41.
Chen Y, Zhang S, Ke F, Ko C, Lee S, Liu K, Chen B, Ager JW, Jeanloz R, Eyert V, Wu J (2017) Pressure−temperature phase diagram of vanadium dioxide. Nano Lett 17(4):2512
- 42.
Eyert E (2002) The metal-insulator transitions of VO2: a band theoretical approach. Ann Phys 11(9):650–702
- 43.
Fu DY, Liu K, Tao T, Lo K, Cheng C, Liu B, Zhang R, Bechtel HA, Wu JQ (2013) Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films. J Appl Phys 113(4):043707
- 44.
Korotin MA, Skorikov NA, Anisimov VI (2002) Variation of orbital symmetry of the localized 3d1 electron of the V4+ ion upon the metal-insulator transition in VO2. Phys Met Metallogr 94(1):17–23
- 45.
Shin S, Taniguchi M, Fujisawa M, Kanzaki H, Fujimori A, Daimon H, Ueda Y, Kosuge K, Kachi S (1990) Vacuum-ultraviolet reflectance and photoemission studyof the metal-insulator phase transitions in VO2, V6O13 and V2O3. Phys Rev B 41(8):4993–5009
- 46.
Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 864:136
- 47.
Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 1133:140
- 48.
Anisimov VI, Zaanen V, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44(3):943–954
- 49.
Liechtenstein AI, Anisimov VI, Zaanen J (1995) Density-functional theory and strong interactions: orbital ordering in Mott–Hubbard insulators. Phys Rev B 52:R5467
- 50.
Anderson OK (1975) Linear methods in band theory. Phys Rev B 12(8):3060
- 51.
Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244
- 52.
Anisimov VI, Aryastiawan F, Lichtenstein AI (1997) First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J Phys: Condens Matter 9(4):767
- 53.
Biswas S (2018) Metal–insulator transition in the high pressure cubic CaF2-type structure of CrO2. Bull Mater Sci 41(2):33
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Biswas, S. A DFT Study of the Electronic, Magnetic and Structural Properties of Rutile VO2. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. (2021). https://doi.org/10.1007/s40010-021-00731-2
Received:
Revised:
Accepted:
Published:
Keywords
- Density functional theory (DFT)
- Transition metal oxides
- Rutile
- Half-metal
- Coulomb interaction
- Crystal structure of VO2