Jain–Durrmeyer Operators Involving Inverse Pólya–Eggenberger Distribution

  • Tarul GargEmail author
  • P. N. Agrawal
  • Arun Kajla
Research Article


Stancu generalized Baskakov operators using inverse Pólya–Eggenberger distribution for a real valued bounded function on \([0,\infty )\) and a non-negative real number \(\alpha \) (which may depend on n). Dhamija and Deo (Appl Math Comput 286:15–22, 2016) introduced a Durrmeyer type modification of these generalized operators and studied the uniform convergence, the rate of convergence by means of the moduli of continuity and the Peetre’s K-functional. The purpose of the present paper is to continue to study the approximation properties of these Durrmeyer type operators. Local and global direct approximation theorems and a Voronovskaya type asymptotic theorem are established. The quantitative Voronovskaya and Grüss Voronovskaya type theorems are investigated by calculating the indispensible sixth order moment. The weighted approximation properties and the approximation of functions with derivatives of bounded variation are also studied.


Grüss Voronovskaya type theorem Inverse Pólya–Eggenberger distribution Steklov mean Weighted approximation 

Mathematics Subject Classification

41A25 41A36 



The first author is thankful to the “Ministry of Human Resource Development, India” for financial support to carry out her research work.


  1. 1.
    Stancu DD (1968) Approximation of functions by a new class of linear polynomial operators. Rev Roum Math Pures Appl 13:1173–1194MathSciNetzbMATHGoogle Scholar
  2. 2.
    Lupas L, Lupas A (1987) Polynomials of binomial type and approximation operators. Studia Univ Babes-Bolyai Math 32(4):61–69 (Romanian summary)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Stancu DD (1985) On the representation by divided differences of the remainder in Bernstein’s approximation formula. Seminar of numerical and statistical calculus (Cluj-Napoca, 1984–1985), pp 103–110, Preprint, 85-4, Univ “Babes-Bolyai”, Cluj-NapocaGoogle Scholar
  4. 4.
    Johnson NL, Kotz S (1969) Distributions in statistics: discrete distributions. Houghton Mifflin Co, Boston Mass xvi+328 ppzbMATHGoogle Scholar
  5. 5.
    Stancu DD (1970) Two classes of positive linear operators. Anal Univ Timişoara, Şer Matem 8:213–220MathSciNetzbMATHGoogle Scholar
  6. 6.
    Baskakov VA (1957) An instance of a sequence of linear positive operators in the space of continuous functions. Dokl Akad Nauk SSSR (N S) 113:249–251 (Russian)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Razi Q (1989) Approximation of a function by Kantorovich type operators. Mat Vesnik 41(3):183–192MathSciNetzbMATHGoogle Scholar
  8. 8.
    Deo N, Dhamija M, Miclăuş D (2016) Stancu-Kantorovich operators based on inverse Pólya–Eggenberger distribution. Appl Math Comput 273:281–289MathSciNetGoogle Scholar
  9. 9.
    Jain GC (1972) Approximation of functions by a new class of linear operators. J Aust Math Soc 13(3):271–276MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Szász O (1950) Generalization of S. Bernsteins polynomials to the infinite interval. J Res Nat Bur Stand 45:239–245MathSciNetCrossRefGoogle Scholar
  11. 11.
    Durrmeyer J L (1967) Une formule d’inversion de la transform e de Laplace: applications   la th orie des moments. Th se de 3e cycle, ParisGoogle Scholar
  12. 12.
    Derriennic MM (1981) Sur l’approximation de fonctions intgrables sur [0, 1] par des polynmes de Bernstein modifies. J Approx Theory 31:325–343MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Aral A, Gupta V, Agarwal RP (2013) Applications of \(q\) calculus in operator theory. Springer, BerlinCrossRefzbMATHGoogle Scholar
  14. 14.
    Gonska H, Kacso D, Rasa I (2007) On genuine Bernstein–Durrmeyer operators. Results Math 50:213–225MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Goyal M, Gupta V, Agrawal PN (2015) Quantitative convergence results for a family of hybrid operators. Appl Math Comput 271:893–904MathSciNetGoogle Scholar
  16. 16.
    Gupta V, Agarwal RP (2014) Convergence estimates in approximation theory. Springer, BerlinCrossRefzbMATHGoogle Scholar
  17. 17.
    Gupta V, Greubel GC (2015) Moment estimations of new Szász-Mirakyan–Durrmeyer operators. Appl Math Comput 271:540–547MathSciNetGoogle Scholar
  18. 18.
    Gupta V, Rassias TM (2015) Direct estimates for certain Szász type operators. Appl Math Comput 251:469–474MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kajla A, Agrawal PN (2015) Szász–Durrmeyer type operators based on Charlier polynomials. Appl Math Comput 268:1001–1014MathSciNetzbMATHGoogle Scholar
  20. 20.
    Dhamija M, Deo N (2016) Jain–Durrmeyer operators associated with the inverse Polya-Eggenberger distribution. Appl Math Comput 286:15–22MathSciNetGoogle Scholar
  21. 21.
    Kajla A, Acu AM, Agrawal PN (2017) Baskakov–Szász-type operators based on inverse Pólya–Eggenberger distribution. Ann Funct Anal 8(1):106–123MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kajla A, Agrawal PN (2015) Approximation properties of Szász type operators based on Charlier polynomials. Turk J Math 39(6):990–1003CrossRefzbMATHGoogle Scholar
  23. 23.
    Özarslan MA, Duman O (2010) Local approximation behavior of modified SMK operators. Miskolc Math Notes 11(1):87–99MathSciNetzbMATHGoogle Scholar
  24. 24.
    Neer T, Agrawal PN, Araci S (2017) Stancu–Durrmeyer type operators based on \(q\)-integers. Appl Math Inf Sci 11(3):1–9MathSciNetCrossRefGoogle Scholar
  25. 25.
    Lenze B (1988) On Lipschitz-type maximal functions and their smoothness spaces. Nederl Akad Wetensch Indag Math 50(1):53–63MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kajla A (2017) Direct estimates of certain Miheşan–Durrmeyer type operators. Adv Oper Theory 2(2):162–178MathSciNetzbMATHGoogle Scholar
  27. 27.
    Zhuk VV (1989) Functions of the Lip1 class and S. N. Bernstein’s polynomials. Vestnik Leningr Univ Mat Mekh Astronom 1:25–30 (in Russian)Google Scholar
  28. 28.
    Ditzian Z, Totik V (1987) Moduli of smoothness, vol 9. Springer series in computational mathematics. Springer, New YorkzbMATHGoogle Scholar
  29. 29.
    İspir N (2001) On modified Baskakov operators on weighted spaces. Turk J Math 25(3):355–365MathSciNetzbMATHGoogle Scholar
  30. 30.
    İspir N, Atakut Ç (2002) Approximation by modified Szász–Mirakjan operators on weighted spaces. Proc Indian Acad Sci (Math Sci) 112(4):571–578MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Acar T (2016) Quantitative \(q\)-Voronovskaya and \(q\)-Grüss-Voronovskaya-type results for \(q\)-Szász operators. Georgian Math J 23(4):459–468MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Acar T, Aral A, Rasa I (2016) The new forms of Voronovskaya’s theorem in weighted spaces. Positivity 20(1):25–40MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Erençin A, Rasa I (2016) Voronovskaya type theorems in weighted spaces. Numer Funct Anal Optim 37(12):1517–1528MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Gonska H, Tachev G (2011) Grüss-type inequalities for positive linear operators with second order moduli. Mat Vesnik 63(4):247–252MathSciNetzbMATHGoogle Scholar
  35. 35.
    Grüss G (1935) Über das Maximum des absoluten Betrages von \(\frac{1}{{b - a}}\int \limits _a^b f(x)g(x)dx - \frac{1}{(b-a)^2}\int \limits _a^b f(x) dx \int \limits _a^b g(x) dx\). (German) Math Z 39(1):215–226MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Acu AM, Gonska H, Rasa I (2011) Grüss-type and Ostrowski-type inequalities in approximation theory. Ukr Math J 63(6):843–864CrossRefzbMATHGoogle Scholar
  37. 37.
    Deniz E (2016) Quantitative estimates for Jain–Kantorovich operators. Commun Fac Sci Univ Ank Sér A1 Math Stat 65(2):121–132MathSciNetzbMATHGoogle Scholar
  38. 38.
    Gal SG, Gonska H (2015) Grüss and Grüss-Voronovskaya-type estimates for some Bernstein-type polynomials of real and complex variables. Jaen J Approx 7(1):97–122MathSciNetzbMATHGoogle Scholar
  39. 39.
    Tariboon J, Ntouyas SK (2014) Quantum integral inequalities on finite intervals. J Inequal Appl 121:13MathSciNetzbMATHGoogle Scholar
  40. 40.
    Ibikli E, Gadjieva EA (1995) The order of approximation of some unbounded function by the sequences of positive linear operators. Turk J Math 19(3):331–337MathSciNetzbMATHGoogle Scholar
  41. 41.
    Gadjiev AD (1976) On P. P. Korovkin type theorems. Math Zametki 20(5):781–786Google Scholar

Copyright information

© The National Academy of Sciences, India 2018

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Department of MathematicsCentral University of HaryanaHaryanaIndia

Personalised recommendations