Modified Space Charge Waves in Magnetized Semiconductor Quantum Plasmas

  • S. Ghosh
  • Apurva Muley
Research Article


A dispersion relation of space charge wave is derived using one dimensional quantum hydrodynamic model in semiconductor plasma subjected to d.c. electric and magneto-static fields. It is studied analytically for both classical and quantum plasma systems. Here the carrier drift due to d.c. electric field acts as source of free energy in the system and may be attributed as cause for unstable space charge mode. It is found that the quantum parameter-H and the orientation of applied magnetic field together not only play a key role in the dynamics of space charge wave but also induce four new channels of propagation. The phase speed and growth rate of all modes are found to be very sensitive to the orientation of the magnetic field.


Quantum plasma in semiconductor Quantum parameter-H Space-charge wave Quantum hydrodynamic model 


  1. 1.
    Zavoiskii EK (1963) Collective interactions and the production of a high-temperature plasma. Sov At Energy 14:57–65CrossRefGoogle Scholar
  2. 2.
    Suprunenko VA, Sukhomlin EA, Tolok VT (1970) Collective interactions and plasma heating in a high current gas discharge. Plasma Phys 12:627–637ADSCrossRefGoogle Scholar
  3. 3.
    Bingham R, Dawson JM, Su JJ, Bethe HA (1994) Collective interactions between neutrinos and dense plasmas. Phys Lett A 193:279–284ADSCrossRefGoogle Scholar
  4. 4.
    Shukla PK, Eliasson B (2011) Colloquium: nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Rev Mod Phys 83:885–906ADSCrossRefGoogle Scholar
  5. 5.
    Glicksman M (1971) Plasmas in solids. In: Sietz F, Turnball D (eds) Solid state physics, vol 26. Academic Press, New York, p 275Google Scholar
  6. 6.
    Bowers R (1963) Plasmas of solids. Scientific American, New York, p 209Google Scholar
  7. 7.
    Hartnagel H (1969) Semiconductor plasma instabilities. Heinemann Educational Books Ltd., LondonGoogle Scholar
  8. 8.
    Steele MC, Vural B (1969) Wave interactions in solid state plasmas. Mc-Graw Hill, New YorkzbMATHGoogle Scholar
  9. 9.
    Manfredi G (2005) How to model quantum plasmas. Fields Inst Commun 46:263–287MathSciNetzbMATHGoogle Scholar
  10. 10.
    Manfredi G, Hass F (2001) Self consistent fluid model for quantum electron gas. Phys Rev B 64:075316–075323ADSCrossRefGoogle Scholar
  11. 11.
    Misra AP, Ghosh NK, Bhowmik C (2008) Solitary wave propagation in quantum electron-positron plamas. Eur Phys J D 49:373–377ADSCrossRefGoogle Scholar
  12. 12.
    Roy K, Misra AP, Chatterjee P (2008) Ion acoustic shocks in quantum electron-positron-ion plasmas. Phys Plasmas 15:032310-1–032310-7ADSCrossRefGoogle Scholar
  13. 13.
    Ghosh S, Khare P (2005) Acousto-electric wave instability in ion-implanted semiconductor plasma. Eurp Phys J D 35:521–526ADSCrossRefGoogle Scholar
  14. 14.
    Ghosh S, Khare P (2006) Acoustic wave amplification in ion-implanted piezoelectric semiconductor. Ind J Pure Appl Phys 44:183–187Google Scholar
  15. 15.
    Kumar G, Tripathi VK (2007) Filamentation of a surface plasma wave over a semiconductor-free space interface. J Appl Phys 102:123301-1–123301-4ADSGoogle Scholar
  16. 16.
    Haas F, Garcia LG, Goedert J, Manfredi G (2003) Quantum ion-acoustic waves. Phys Plasmas 10:3858–3866ADSCrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2018

Authors and Affiliations

  1. 1.School of Studies in PhysicsVikram UniversityUjjainIndia

Personalised recommendations