Skip to main content
Log in

Abstract

The impact of temperature in carrier transport of scattered SiNW MOSFET has been developed. Scattered SiNW MOSFET model includes the effects of elastic scattering, optical phonon emission, surface roughness scattering and random discrete dopants. The temperature effect of above mentioned scatterings in the device limits electron mobility, decreasing device current and transconductance. This work discusses the detailed behavior of analog parameters like transconductance (gm) and early voltage (VA). The validity of the proposed model has been confirmed by comparing the analytical results with the technology computer aided design simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sheik Arafat I, Balamurugan NB, Priya C (2014) Effects of roughness scattering in carrier transport of near ballistic silicon nanowire MOSFET. Appl Mech Mater 573:201–208

    Article  Google Scholar 

  2. Natori K (2008) Compact modeling of ballistic nanowire MOSFETs. IEEE Trans Electron Dev 55:2877–2885

    Article  ADS  Google Scholar 

  3. Martinez A, Seoane N, Brown A, Asenov A (2009) A comparison between a fully 3D real-space versus coupled mode-space NEGF in the study of variability in gate-all-around Si nanowire MOSFET. In: Proceedings of SISPAD, San Jose, CA, pp 194–197

  4. Zilli M, Esseni D, Palestri P, Selmi L (2007) On the apparent mobility in nanometric n-MOSFET. IEEE Electron Dev Lett 28:1036–1039

    Article  ADS  Google Scholar 

  5. Pala MG, Buran C, Poli S, Mouis M (2009) Full quantum treatment of surface roughness effects in silicon nanowires and double gate. J Comput Electron 8:374–381

    Article  Google Scholar 

  6. Chang P-C, Lu JG (2008) ZnO nanowire field-effect transistor. IEEE Trans Electron Dev 55:164–171

    Google Scholar 

  7. Fischetti MV, Laux SE (1993) Monte Carlo study of electron transport in silicon inversion layers. Phys Rev B 48:2244–2274

    Article  ADS  Google Scholar 

  8. Majima H, Saito Y, Hiramoto T (2001) Impact of quantum mechanical effects on design of nano-scale narrow channel n- and p-type MOSFETs. In: IEEE international electron devices meeting (IEDM) technical digest, pp 951–954

  9. Niquet Y, Mera H, Delerue C (2012) Impurity-limited mobility and variability in gate-all-around silicon nanowires. Appl Phys Lett 100:153119–153125

    Article  ADS  Google Scholar 

  10. Martinez A, Bescond M, Barker JR, Svizhenkov A, Anantram A, Asenov A (2007) A self consistent 3-D full real space NEGF simulator for studying non perturbarative effects in nanoMOSFET. IEEE Trans Electron Dev 54:2213–2222

    Article  ADS  Google Scholar 

  11. Seoane N, Martinez A, Brown AR (2009) Current variability in Si nanowire MOSFETs due to random dopants in the source/drain regions: a fully 3-D NEGF simulation study. IEEE Trans Electron Dev 56:1388–1395

    Article  ADS  Google Scholar 

  12. Natori K (2012) Compact modeling of quasi-ballistic nanowire MOSFETs. IEEE Trans Electron Dev 59:79–86

    Article  ADS  Google Scholar 

  13. Wang R, Zhuge J, Huang R, Tian Y, Xiao H, Zhang L, Li C, Zhang X (2007) Analog/RF performance of Si nanowire MOSFETs and the impact of process variation. IEEE Trans Electron Dev 54:1288–1294

    Article  ADS  Google Scholar 

  14. Kelzenberg MD, Evans DB, Filler MA, Putnam MC, Lewis NS, HA Atwater (2008) Single-nanowire Si solar cells. In: IEEE photovoltaic speacialists conference

  15. Penzin O, Paasch G, Heinz F, Smith L (2011) Extended quantum correction model applied to six-band valence band near silicon/oxide interfaces. IEEE Trans Electron Dev 58:1614–1619

    Article  ADS  Google Scholar 

  16. Penzin O, Smith L, Erlebach A, Lee K (2015) Layer thickness and stress-dependent correction for InGaAs low-field mobility in TCAD applications. IEEE Trans Electron Dev 62:493–500

    Article  ADS  Google Scholar 

  17. Landauer R (1957) Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev 1:223–228

    Article  MathSciNet  Google Scholar 

  18. Grosso G, Moroni S, Parravicini GP (1989) Electronic structure of the InAs-GaSb superlattice studied by the renormalization method. Phys Rev B 40:12328–12334

    Article  ADS  Google Scholar 

  19. Suk SD, Lee SY, Kim SM, Yoon EJ, Kim MS, Li M, Park CJ, Park JB, Kim DW, Park D, Ryu BI (2005) Highperformance 5-nm radius twin silicon nanowire MOSFET (TSNWFET): fabrication on bulk Si wafer, characteristics, and reliability. In: IEDM technical digest, pp 717–720

  20. Li SS (1977) The dopant density and temperature dependence of electron mobility and resistivity in n-type silicon. NBS special publication, pp 400–413

  21. Sato S (2010) Gate semi-around Si nanowire FET fabricated by conventional CMOS process with very high drivability. In: IEEE, pp 14–16

  22. Jiang Y (2008) Performance breakthrough in 8 nm gate length gate-all-around nanowire transistors using metallic nanowire contacts. In: Technical digest of symposium on VLSI technology, pp 34–35

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sheik Arafat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheik Arafat, I., Balamurugan, N.B. & Bismillah Khan, S. Influence of Temperature in Scattered SiNW MOSFET. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 89, 35–40 (2019). https://doi.org/10.1007/s40010-017-0385-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-017-0385-2

Keywords

Navigation