Performance Evaluation of SD-WDM System to Mitigate the Effect of XPM using HOA

Abstract

This paper has dealt with the mitigation effect of cross-phase modulation (XPM) which is a nonlinear effect of fiber losses. To control the losses, we have used a quantum dot vertical cavity semiconductor optical amplifier with vertical cavity semiconductor optical amplifier as hybrid optical amplifier (HOA). Further, an analysis of 560 channels with a data rate of 40 Gbps has been done to achieve the acceptable rating of gain, quality factor and noise figure. The final suggestion has recommended that the proposed HOA is most suitable to control the XPM with a received quality factor from 40 to 16 dB.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig.2
Fig.3

References

  1. 1.

    1L. Du and A. Lowery, Experimental demonstration of XPM compensation for CO-OFDM systems with periodic dispersion maps, in Proc Opt Fiber Commun Conf Exhibit, March 2011, pp. 1–3

  2. 2.

    Foo B, Corcoran B, Zhu C, Lowery AJ (2016) Distributed nonlinearity compensation of dual-polarization signals using optoelectronics. IEEE Photon Technol Lett 28(20):2141–2144

    ADS  CAS  Article  Google Scholar 

  3. 3.

    Du LB, Lowery AJ (2008) Improved nonlinearity pre compensation for long-haul high-data-rate transmission using coherent optical OFDM. Opt Exp 16(24):19920–19925

    ADS  Article  Google Scholar 

  4. 4.

    Chiang T-K, Kagi N, Marhic ME, Kazovsky LG (1996) Cross phase modulation in fiber links with multiple optical amplifiers and dispersion compensators. J Lightw Technol 14(3):249–260

    ADS  Article  Google Scholar 

  5. 5.

    Xu C, Liu X (2002) Post nonlinearity compensation with data-driven phase modulators in phase-shift keying transmission. Opt Lett 27(18):1619–1621

    ADS  Article  Google Scholar 

  6. 6.

    Foo B, Corcoran B, Lowery AJ (2015) Optoelectronic method for inline compensation of XPM in long-haul optical links. Opt Exp 23(2):859–872

    ADS  Article  Google Scholar 

  7. 7.

    7L. Du and A. Lowery, Compensating XPM for 100 Gbit/s coherent channels with 10 Gbit/s direct-detection NRZ neighbors, in Proc Opt Fiber Commun Conf Exhibit. March 2010, pp. 1–3

  8. 8.

    Du LB, Lowery AJ (2010) Practical XPM compensation method for coherent optical OFDM systems. IEEE Photon Technol Lett 22(5):320–322

    ADS  Article  Google Scholar 

  9. 9.

    9K. Solis-Trapala, T. Inoue and S. Namiki, Nearly-ideal optical phase conjugation based nonlinear compensation system, in Proc Opt Fiber CommunConf Exhibit, March 2014, pp. 1–3

  10. 10.

    Ellis AD, McCarthy ME, Al-Khateeb MAZ, Sygletos S (2015) Capacity limits of systems employing multiple optical phase conjugators. Opt Exp 23(16):20381–20393

    ADS  CAS  Article  Google Scholar 

  11. 11.

    Hu H et al (2014), Fiber nonlinearity compensation of an 8-channel WDM PDM-QPSK signal using multiple phase conjugations, in Proc Opt Fiber Commun Conf, San Francisco, CA, USA, March 2014, pp. 1–3

  12. 12.

    Temprana E et al (2015) Overcoming Kerr-induced capacity limit in optical fiber transmission. Science 348(6242):1445

    ADS  CAS  Article  Google Scholar 

  13. 13.

    Morshed M, Du LB, Foo B, Pelusi MD, Corcoran B, Lowery AJ (2014) Experimental demonstrations of dual polarization COOFDM using mid-span spectral inversion for nonlinearity compensation. Opt Exp 22(9):10455–10466

    ADS  Article  Google Scholar 

  14. 14.

    Chowdhury A et al (2005) Compensation of intra channel nonlinearities in 40-Gb/s pseudolinear systems using optical-phase conjugation. J Lightw Technol 23(1):172–177

    ADS  Article  Google Scholar 

  15. 15.

    Ip E (2010) Nonlinear compensation using backpropagation for polarization multiplexed transmission. J LightwTechnol 28(6):939–951

    Article  Google Scholar 

  16. 16.

    Li X et al (2008) Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing. Opt Exp 16(2):800–888

    ADS  Google Scholar 

  17. 17.

    Agrawal G (2013) Nonlinear Fiber Optics. Academic, Orlando

    Google Scholar 

  18. 18.

    Ellis AD, Zhao J, Cotter D (2010) Approaching the non-linear Shannon limit. J LightwTechnol 28(4):423–433

    Article  Google Scholar 

  19. 19.

    Essiambre RJ, Foschini GJ, Kramer G, Winzer PJ (2008) Capacity limits of information transport in fiber-optic networks. Phys Rev Lett 101(16):163901

    ADS  Article  Google Scholar 

  20. 20.

    Mitra PP, Stark JB (2001) Nonlinear limits to the information capacity of optical fibre communications. Nature 411:1027–1030

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chakresh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, C., Kumar, G. Performance Evaluation of SD-WDM System to Mitigate the Effect of XPM using HOA. Natl. Acad. Sci. Lett. (2021). https://doi.org/10.1007/s40009-020-01029-4

Download citation

Keywords

  • SD-WDM
  • HOA
  • Quality factor
  • ASE
  • Noise figure
  • VCSOA
  • QDVCSOA
  • XPM