Skip to main content
Log in

In Vitro Antagonism of Trichoderma Isolates Against Curvularia andropogonis Causing Leaf Blight of Java Citronella

  • Short Communication
  • Published:
National Academy Science Letters Aims and scope Submit manuscript

Abstract

Leaf blight is the most devastating disease of Java Citronella (Cymbopogon winterianus) in North east India. The pathogen was isolated and identified as Curvularia andropogonis. A total of 6 Trichodema isolates were recovered from forest soil and tested against the target pathogen. Analysis of variance (ANOVA) revealed significant differences among Trichoderma isolates in checking the mycelial growth of C. andropogonis in dual culture, inverted plate and culture filtrate assay (P < 0.05). Two potential Trichoderma isolates were identified as T. asperellum and T. virens using sequence analysis of internal transcribed spacer region of the ribosomal DNA. Both the species were found more effective and significantly inhibited the growth of the test pathogen in vitro. Our results suggest appealing application possibilities of Trichoderma isolates in the biological management of leaf blight disease of Java Citronella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Mao AA, Hynniewta TM, Sangappa M (2009) Plant wealth of North east India with reference to Ethnobotany. Indian J Tradit Knowl 8(1):96–103

    Google Scholar 

  2. Ganjewala D (2009) Cymbopogon essential oils: chemical compositions and bioactivities. Int J Essent Oil Ther 3:56–65

    CAS  Google Scholar 

  3. Chutia M, Mahanta JJ, Saikia RC, Baruah AKS, Sharma TC (2006) Influence of Leaf Blight disease on yield and its constituents of Java Citronella and in vitro control of the pathogen using essentials oil. World J Agric Sci 2(3):319–321

    Google Scholar 

  4. Yang C, Hamel C, Vujanovic V, Gan Y (2011) Fungicide: modes of Action and Possible Impact on Nontarget Microorganisms. ISRN Ecology. https://doi.org/10.5402/2011/130289

    Article  Google Scholar 

  5. Subramanian CV (1953) Fungi Imperfecti from Madras. V. Curvularia. Proc Indian Acad Sci Sect B 3:27–39

    Google Scholar 

  6. Gil SV, Pastorb S, Marcha GJ (2009) Quantitative isolation of biocontrol agents Trichoderma spp., Gliocladium spp. and actinomycetes from soil with culture media. Microbiol Res 164(2):196–205

    Article  CAS  Google Scholar 

  7. Morton DJ, Stroube WH (1955) Antagonistic and stimulating effects of soil micro-organism upon Sclerotium rolfsii. Phytopathology 45:417–420

    Google Scholar 

  8. Dennis C, Webster J (1971) Antagonistic properties of species groups of Trichoderma- II. Production of volatile antibiotics. Trans Br Mycol Soc 57:47–48

    Google Scholar 

  9. Grover RK, Moore JD (1962) Toximetric studies of fungicides against brown rot organism. Sclerotina fruticola. Phytopathology 52:876–880

    CAS  Google Scholar 

  10. Anees M, Tronsmo A, HermannVE Hjeljord LG, Heraud C, Steinberg C (2010) Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani. Fungal Biol 114:691–701

    Article  PubMed  Google Scholar 

  11. Diaz G, Corcoles AI, Asencio AD, Torres MP (2012) In vitro antagonism of Trichoderma and naturally occurring fungi from elms against Ophiostoma novo-ulmi. For Pathol 43(1):51–58

    Google Scholar 

  12. Tapwal A, Singh U, Teixeira da Silva JA, Singh G, Garg S, Kumar R (2011) In vitro antagonisn of Trichoderma viride against five phytopathogens. Pest Technology 5(1):59–62

    Google Scholar 

  13. Muthukumar A, Eswaran A, Sanjeevkumas K (2011) Exploitation of Trichoderma species on the growth of Pythium aphanidermatum in Chilli. Braz J Microbiol 42(4):1598–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sharfuddin C, Mohanka R (2012) In vitro antagonism of indigenous Trichoderma isolates against phytopathogen causing wilt of lentil. Int J Life Sci Pharma Res 2(3):195–202

    Google Scholar 

  15. Rahman MA, Begum MF, Alam MF (2009) Screening of Trichoderma isolates as a biological control agent against Ceratocystis paradoxa causing Pineapple Disease of Sugarcane. Mycobiology 37(4):277–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dennis C, Webster J (1971) Antagonistic properties of species groups of Trichoderma—II. Production of volatile antibiotics. Trans Br Mycol Soc 57:47–48

    Google Scholar 

  17. Schirmbock M, Lorito M, Wang YL, Hayes CK, Arisan AI, Scala F, Herman GE, Kubicek CP (1994) Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Appl Environ Microbiol 60(12):4344–4370

    Google Scholar 

  18. Kucuk C, Kivanc M (2004) In vitro antifungal activity of strains of Trichoderma harzianum. Turk J Biol 28:111–115

    Google Scholar 

  19. Reino JL, Guerrero RF, Galan RH, Collado IJ (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123

    Article  CAS  Google Scholar 

  20. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86

    Article  CAS  Google Scholar 

  21. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  Google Scholar 

  22. Druzhinina IS, Kopchinskiy AG, Kubicek CP (2006) The first 100 Trichoderma species characterized by molecular data. Mycoscience 47:55–64

    Article  CAS  Google Scholar 

  23. Latha J, Verma A, Mukherjee PK (2002) PCR-fingerprinting of some Trichoderma isolates from two Indian type culture collections—a need for re-identification of these economically important fungi. Curr Sci 83(4):372–374

    CAS  Google Scholar 

  24. Mukherjee PK, Mukherjee AK, Krathi S (2013) Reclassification of Trichoderma viride (TNAU), the Most Widely Used Commercial Biofungicide in India, as Trichoderma asperelloides. Open Biotechnol J 7:7–9

    Article  CAS  Google Scholar 

  25. Druzhinina IS, Komon-Zelazowska M, Kredics L, Hatvani L, Antal Z, Belayneh T, Kubicek CP (2008) Alternative reproductive strategies of Hypocrea orientalis and genetically close but clonal Trichoderma longibrachiatum, both capable of causing invasive mycoses of humans. Microbiology 154:3447–3459

    Article  CAS  PubMed  Google Scholar 

  26. Kuhls K, Lieckfeldt E, Borner T, Gueho E (1999) Molecular reidentification of human pathogenic Trichoderma isolates as Trichoderma longibrachiatum and Trichoderma citrinoviride. Med Mycol 37:25–33

    Article  CAS  PubMed  Google Scholar 

  27. Samuels GJ, Dodd SL, Gams W, Castlebury LA, Petrini O (2002) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94:146–170

    Article  PubMed  Google Scholar 

  28. Błaszczyk L, Siwulski M, Sobieralski K, Frużynska-Jozwiak D (2013) Diversity of Trichoderma spp. causing Pleurotus green mould diseases in Central Europe. Folia Microbiol 58(4):325–333

    Article  CAS  Google Scholar 

  29. Weindling R (1932) Trichoderma lignorum as a parasite of other soil fungi. Phytopathology 22:837–845

    Google Scholar 

  30. Benitez T, Rincon AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    CAS  PubMed  Google Scholar 

  31. Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  CAS  PubMed  Google Scholar 

  32. Harman GE (2011) Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity. New Phytol 189:647–649

    Article  PubMed  Google Scholar 

  33. Sarma A, Saikia RC, Sarma TC (2004) Effect of leaf blight disease on citronella oil and its major constituents and in vitro control of disease through application of bio-control agent. J Essent Oil Bear Plants 7(3):288–292

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The support by the Indian Council of Forestry Research and Education, Dehradun, for funding the Research Project ‘RFRI/2013-14/FP-5′ is gratefully acknowledged. Authors also express our gratitude to National Fungal Culture Collection of India (NFCCI), Pune for confirming the identities of fungal isolates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailesh Pandey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S., Kumar, R. & Giri, K. In Vitro Antagonism of Trichoderma Isolates Against Curvularia andropogonis Causing Leaf Blight of Java Citronella. Natl. Acad. Sci. Lett. 42, 259–263 (2019). https://doi.org/10.1007/s40009-018-0728-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40009-018-0728-9

Keywords

Navigation