Advertisement

National Academy Science Letters

, Volume 42, Issue 2, pp 123–130 | Cite as

On a Complex Randers Space

  • Sweta KumariEmail author
  • P. N. Pandey
Short Communication

Abstract

In the present paper, a complex Randers space with the metric \( F = \alpha + \varepsilon \left| \beta \right| + k\frac{{\left| \beta \right|^{2} }}{\alpha },\varepsilon ,k \ne 0 \) is introduced and expressions for fundamental metric tensor, angular metric tensor, Chern–Finsler connection coefficients and curvature are obtained.

Keywords

Finsler space Randers space Complex Randers space Chern–Finsler connection coefficients 

Mathematics Subject Classification

53B40 53C56 

References

  1. 1.
    Finsler P (1951) Uber Kurven and flacken in Allgemeinen Raumen (dissertation Gottingen 1918). Springer, BerlinzbMATHGoogle Scholar
  2. 2.
    Rizza G (1963) Strutture di Finsler di Tipo quasi hermitiano. Riv Mat Univ Parma 4:83–106MathSciNetzbMATHGoogle Scholar
  3. 3.
    Kobayashi S (1967) Distance, holomorphic mappings and the Schwarz lemma. J Math Soc Jpn 19(4):481–485MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Abate M, Patrizio G (1994) Finsler metrics: a global approach with applications to geometric function theory. Springer, BerlinCrossRefzbMATHGoogle Scholar
  5. 5.
    Shen Z, Yildirim GC (2008) On a class of projectively Flat metric with constant Flag curvature. Can J Math 60:443–456MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Aldea N, Munteanu G (2009) On complex Finsler spaces with Randers metric. J Korean Math Soc 46(5):949–966MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bao D, Chern SS, Shen Z (2000) An introduction to Riemann–Finsler geometry. Graduate Texts in Mathematics 200. Springer, New YorkGoogle Scholar
  8. 8.
    Bao D, Robles C, Shen Z (2004) Zermelo navigation on Riemannian manifolds. J Differ Geom 66(3):377–435MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Yasuda H, Shimada H (1977) On Randers spaces of scalar curvature. Rep Math Phys 11(3):347–360ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Matsumoto M (1989) Randers spaces of constant curvature. Rep Math Phys 28(2):249–261ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Abate M, Patrizio A (1994) Finsler metric—a global approach with applications to geometric function theory, Lecture Notes in Mathematics, vol 1591. Springer, BerlinzbMATHGoogle Scholar
  12. 12.
    Aikou T (2003) Projective flatness of complex Finsler metrics. Publ Math Debrecen 63(3):343–362MathSciNetGoogle Scholar
  13. 13.
    Munteanu G (2004) Complex spaces in Finsler, Lagrange and Hamilton geometries. Fundamental Theories of Physics. Kluwer Academic Publishers, DordrechtCrossRefzbMATHGoogle Scholar
  14. 14.
    Spir A (2001) The structure equations of a complex Finsler manifold. Asian J Math 5(2):291–326MathSciNetCrossRefGoogle Scholar
  15. 15.
    Aldea N, Munteanu G (2006) (α, β)-complex Finsler metrices. In: Proceedings of the 4th International Colloquium “Mathematics in Engineering and National Physics”, Burcharet, Romania, pp 1–6Google Scholar
  16. 16.
    Aldea N, Munteanu G (2006) On the geometry of Complex Randers space. In: Proceedings of the 14th Nat. Sem. On Finsler, Lagrange and Hamilton spaces, Brasov, pp 1–8Google Scholar

Copyright information

© The National Academy of Sciences, India 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of AllahabadAllahabadIndia

Personalised recommendations