Skip to main content

Advertisement

Log in

Using High Resolution Stereo Imagery for Contouring: Complex Terrain Contour Mapping of Naukandi, Balochistan

  • Short Communication
  • Published:
National Academy Science Letters Aims and scope Submit manuscript

Abstract

Topographic maps are large scale representation of earth features. Most important characteristic of these maps is third dimension representation of objects by using contour lines. Topographic maps are the base layers of any spatial data infrastructure. Advances in spatial sciences demand more accurate and up to date topographic representation. While traditional methods of topographic surveying are time consuming and impractical in complex topographic regions. Remote sensing and GIS techniques are being used to develop topographic data of such remote areas with great accuracy, less labor and time consumption. This study uses high resolution satellite stereo images to generate Digital Elevation Model (DEM) at 1 m contour interval of complex topographic region of Baluchistan, Pakistan. Stereo images are two satellite images of same position of the earth captured along the same track with different angles. For handling and processing the stereo images Ground Control Points (GCPs) are used. GCP is a permanent referencing points needs to orient the stereo images such that they are in the same orientation as the camera was at the time of exposure. Overlapping the stereo pair according to the well distributed ground control points generates the 3D surface which is generated from 2D stereo images. This 3D surface is being compared and validated with 90 m STRM’s and 30 m ASTER datasets of the same area. The pattern of contours at an interval of 1 m is being analyzed at all three sources of DEM and most accurate pattern is being identifies through this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Arabinda Sharma A, Gupta D (2014) Derivation of topographic map from elevation data available in google earth. Civ En Urban Plan Int J (CiVEJ) 1:1–8

    Google Scholar 

  2. Ozah AP, Kufoniyi O (2008) Accuracy assessment of contour interpolation from 1:50,000 topographical maps and SRTM data for 1:25000 topographical mapping. Int Arch Photogramm Remote Sens Spat Inf Sci 37(B7):1347–1354

    Google Scholar 

  3. Collier P, Forrest D, Pearson A (2003) The representation of topographic information on maps: the depiction of relief. Cartogr J 40(1):17–26

    Article  Google Scholar 

  4. Forrest D, Kinninment E (2001) Experiments in the design of 1:100 000 scale topographic mapping for Great Britain. Cartogr J 38(1):25–40

    Article  Google Scholar 

  5. Soycan M, Tunalıoglu N, Ocalan T, Soycan A, Gumus K (2011) Three dimensional modeling of a forested area using an airborne light detection and ranging. Arab J Sci Eng 36(4):581–595

    Article  Google Scholar 

  6. Millette TL, Tuladhar AR, Kasperson RE, Turner BL (1995) The use and limits of remote sensing for analysing environmental and social change in the Himalayan middle mountains of Nepal. Glob Environ Change Hum Policy Dimens 5(4):367–380

    Article  Google Scholar 

  7. Zomer R, Ustin S, Ives J (2010) Using satellite remote sensing for DEM extraction in complex mountainous terrain: landscape analysis of the Makalu Barun National Park of eastern Nepal. Int J Remote Sens 23(1):125–143

    Article  Google Scholar 

  8. Gruen AW, Baltsavias EP (1987) High precision image matching for digital terrain model generation. Photogrammetria (PRS) 42:97–112

    Article  Google Scholar 

  9. Aggett G (2005) Airborne laser mapping with lidar for dummies. In: GIS for local government conference

  10. Pieczonka T, Bolch T, Buchroithner M (2011) Generation and evaluation of multitemporal digital terrain models of the Mt. Everest area from different optical sensors. ISPRS J Photogramm Remote Sens 66:927–940

    Article  ADS  Google Scholar 

  11. Yue T, Du Z, Song D, Gong Y (2007) A new method of surface modeling and its application to DEM construction. Geomorphology 91(1–2):161–172

    Article  ADS  Google Scholar 

  12. Koch A, Heipke C (2006) Semantically correct 2.5D GIS data—the integration of a DTM and topographic vector data. ISPRS J Photogramm Remote Sens 61:23–32

    Article  ADS  Google Scholar 

  13. Lee HY, Lee HK, Kim T, Park W (2003) Extraction of digital elevation models from satellite stereo images through stereo matching based on epipolarity and scene geometry. Image Vis Comput 21:789–796

    Article  Google Scholar 

  14. Deilami K, Hashim M (2011) Very high resolution optical satellites for DEM generation: a review. Eur J Sci Res 49(4):542–554

    Google Scholar 

  15. Saldana MM, Aguilar MA, Aguilar FJ, Fernandez I (2012) DSM extraction and evaluation from geoeye-1 stereo imagery. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 1(4):113–118

    Article  Google Scholar 

  16. D’Ozouville N, Deffontaines B, Benveniste J, Wegmuller U, Violette S, De’Marsily G (2008) DEM generation using ASAR (ENVISAT) for addressing the lack of freshwater ecosystems management, Santa Cruz Island Galapagos. Remote Sens Environ 112:4131–4147

    Article  ADS  Google Scholar 

  17. Hirano A, Welch R, Lang H (2003) Mapping from ASTER stereo image data DEM validation and accuracy assessment. ISPRS J Photogramm Remote Sens 57:356–370

    Article  ADS  Google Scholar 

  18. Stevens N, Garbeil H, Mouginis-Mark P (2004) NASA EOS Terra ASTER Volcanic topographic mapping and capability. Remote Sens Environ 90:405–414

    Article  ADS  Google Scholar 

  19. Galiatsatos N, Donoghue NM, Philip G (2008) High resolution elevation data derived from stereoscopic CORONA imagery with minimal ground control: an approach using Ikonos and SRTM data. Photogramm Eng Remote Sens 74(9):1093–1106

    Article  Google Scholar 

  20. Ioannidis C, Xinogalas E, Soile S (2014) Assessment of the global digital elevation models ASTER and SRTM in Greece. Surv Rev 46(338):342–354

    Article  Google Scholar 

  21. District Chaghi early child education plan prepared by Education Deptt, government of Balochistan in collaboration with PPIU, SCSPEB and UNESCO (2011–2015)

  22. Base line survey Chaghi District by SMAAJ (2012)

  23. Hohle J, Hohle M (2009) Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J Photogramm Remote Sens 64(4):398–406

    Article  ADS  Google Scholar 

  24. Leica photogrammetry suite automatic terrain extraction user’s guide (February 2008)

  25. Damodar L, Takanobu S, Teiji W (2011) Digital terrain modelling using Corona and ALOS PRISM data to investigate the distal part of Imja Glacier Khumbu Himal Nepal. J Mt Sci 8:390–402

    Article  Google Scholar 

  26. Giribabu D, Mathew J, Sharma KP, Kumar P, Murthy YVNK (2013) DEM generation using Cartosat-1 stereo data: issues and complexities in Himalayan terrain. Eur J Remote Sens 46:431–443

    Article  Google Scholar 

  27. Global Mapper User’s Manual

  28. Graf KC, Suter M, Meier E, Meuret P, Nuesch D (1994) Perspective terrain visualization—a fusion of remote sensing, GIS and computer graphics. Comput Graph 18:795–802

    Article  Google Scholar 

  29. Mokarrama M, Hojati M (2016) Landform classification using a sub-pixel spatial attraction model to increase spatial resolution of digital elevation model (DEM). Egypt J Remote Sens Space Sci. https://doi.org/10.1016/j.ejrs.2016.11.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Hassan Tariq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, H.H., Hamid, M., Gulzar, Q. et al. Using High Resolution Stereo Imagery for Contouring: Complex Terrain Contour Mapping of Naukandi, Balochistan. Natl. Acad. Sci. Lett. 42, 13–17 (2019). https://doi.org/10.1007/s40009-018-0663-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40009-018-0663-9

Keywords

Navigation