Skip to main content
Log in

Analytical Solution for Fractional Gas Dynamics Equation

  • Short Communication
  • Published:
National Academy Science Letters Aims and scope Submit manuscript

Abstract

A new hybrid method based on fractional order shifted Legendre polynomials is constructed in the present study to obtain the analytical solution of a fractional gas dynamics equation. The theoretical analysis such as convergence analysis and error bound for the proposed technique have been demonstrated. The illustrated examples are shown to test the ability and accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Jagdev Singh, Devendra Kumar, Kślśman A (2013) Homotopy perturbation method for fractional gas dynamics equation using sumudu transform. Abstr Appl Anal. Article ID 934060

  2. Devendra Kumar, Jagdev Singh, Dumitru Baleanu (2016) Numerical computation of a fractional model of differential-difference equation. J Comput Nonlinear Dyn 11(6):061004

  3. Kumar Devendra, Singh Jagdev, Kumar Sunil, Sushila BP Singh (2015) Numerical computation of nonlinear shock wave equation of fractional order. Ain Shams Eng J 6(2):605–611

    Article  Google Scholar 

  4. Kumar Devendra, Singh Jagdev, Baleanu Dumitru (2016) A hybrid computational approach for Klein–Gordon equations on Cantor sets. Nonlinear Dyn. https://doi.org/10.1007/s11071-016-3057-x

  5. Momani S (2005) Analytic and approximate solution of the space- and time-fractional telegraph equations. Appl Math Comput 170(2):1126–1134

    MathSciNet  MATH  Google Scholar 

  6. Al-Khaled K, Momani S (2005) An approximate solution for a fractional diffusion-wave equation using the decomposition method. Appl Math Comput 165:473–483

    MathSciNet  MATH  Google Scholar 

  7. Hanyga A (2002) Multidimensional solutions of time-fractional diffusion-wave equations. Proc R Soc Lond A 485:933–957

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Debnath L, Bhatta D (2004) Solutions to few linear fractional inhomogeneous partial differential equations in fluid mechanics. Fract Calc Appl Anal 7:21–36

    MathSciNet  MATH  Google Scholar 

  9. Fix GJ, Roop JP (2004) Least squares finite element solution of a fractional order two-point boundary value problem. Comput Math Appl 48(7–8):1017–1033

    Article  MathSciNet  MATH  Google Scholar 

  10. Mainardi F (1997) Fractional calculus: some basic problems in continuum and statistical mechanics. Fractals and fractional calculus in continuum mechanics. Springer, New York, pp 291–348

  11. Momani S, Shawagfeh NT (2006) Decomposition method for solving fractional Riccati differential equations. Appl Math Comput 182:1083–1092

    MathSciNet  MATH  Google Scholar 

  12. Ray SS, Chaudhuri KS, Bera RK (2006) Analytical approximate solution of nonlinear dynamic system containing fractional derivative by modiĄed decomposition method. Appl Math Comput 182:544–552

    MathSciNet  MATH  Google Scholar 

  13. Wang Q (2006) Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method. Appl Math Comput 182:1048–1055

    MathSciNet  MATH  Google Scholar 

  14. Hashim I, Abdulaziz O, Momani S (2009) Homotopy analysis method for fractional IVPs. Commun Nonlinear Sci Numer Simul 14:674–684

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Jafari H, Golbabai A, SeiĄ S, Sayevand K (2010) Homotopy analysis method for solving multi-term linear and nonlinear diffusion-wave equations of fractional order. Comput Math Appl 59:1337–1344

    Article  MathSciNet  MATH  Google Scholar 

  16. Yildirim A (2010) He’s homotopy perturbation method for solving the space and time fractional telegraph equations. Int J Comput Math 87:2998–3006

    Article  MathSciNet  MATH  Google Scholar 

  17. Yildirim A (2010) He’s homotopy perturbation method for solving the space- and time-fractional telegraph equations. Int J Comput Math 87(13):2998–3006

    Article  MathSciNet  MATH  Google Scholar 

  18. Momani S, Odibat Z (2007) Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Solitons Fractals 31(5):1248–1255

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Chen W, Ye L, Su H (2010) Fractional diffusion equations by the Kansa method. Comput Math Appl 59:1614–1620

    Article  MathSciNet  MATH  Google Scholar 

  20. He Y, Wei L, Zhang X (2013) Analysis of a local discontinuous Galerkin method for time-fractional advection-diffusion equations. Int J Numer Method Heat Fluid Flow 23(4):634–648

    Article  MathSciNet  MATH  Google Scholar 

  21. Kazem S (2013) An integral operational matrix based on Jacobi polynomials for solving fractional-order differential equations. Appl Math Model 37:1126–1136

    Article  MathSciNet  MATH  Google Scholar 

  22. Krishnasamy VS, Razzaghi M (2016) The numerical solution of the BagleyTorvik equation with fractional Taylor method. ASME J Comput Nonlinear Dyn 11(5):051010

    Article  Google Scholar 

  23. Ramswroop Singh J, Kumar D (2014) Numerical study for time-fractional Schrodinger equations arising in quantum mechanics. Nonlinear Eng 3(3):169–177

    Article  Google Scholar 

  24. Singh J, Kumar D, Kilicman A (2014) Numerical solutions of nonlinear fractional partial differential equations arising in spatial diffusion of biological populations. Abst Appl Anal 2014:535793

    MathSciNet  MATH  Google Scholar 

  25. Rida SZ, El-Sayed AMA, Arafa AAM (2010) On the solutions of time-fractional reaction–diffusion equations. Commun Nonlinear Sci Numer Simul 15(12):3847–3854

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Singh J, Kumar D, Sushila (2011) Homotopy perturbation Sumudu transform method for nonlinear equations. Adv Appl Math Mech 4:165–175

    MATH  Google Scholar 

  27. Singh J, Kumar D, Kilicman A (2014) Numerical solutions of nonlinear fractional partial differential equations arising in spatial diffusion of biological populations. Abstr Appl Anal 535–793

  28. Singh J, Kumar D, Kumar S (2014) A new fractional model of nonlinear shock wave equation arising in flow of gases. Nonlinear Eng 3(1):43–50

    Article  CAS  Google Scholar 

  29. Singh J, Kumar D, Kumar S (2013) New treatment of fractional Fornberg–Whitham equation via Laplace transform. Ain Sham Eng J 4:557–62

    Article  Google Scholar 

  30. Doha EH, Bhrawy AH, Ezz-Eldien SS (2015) An efficient Legendre spectral tau matrix formulation for solving fractional subdiffusion and reaction subdiffusion equations. J Comput Nonlinear Dyn 10(1–8):021019

    Article  Google Scholar 

  31. Bhrawy AH, Taha TM, Machado JAT (2015) A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn 81:1023–1052

    Article  MathSciNet  MATH  Google Scholar 

  32. Machado JAT, Mata ME (2015) A fractional perspective to the bond graph modelling of world economies. Nonlinear Dyn 80:1839–1852

    Article  MathSciNet  Google Scholar 

  33. Zhou Y, Ionescu C, Machado JAT (2015) Fractional dynamics and its applications. Nonlinear Dyn 80:1661–1664

    Article  MathSciNet  Google Scholar 

  34. Yang AM, Zhang YZ, Cattani C, Xie GN, Rashidi MM, Zhou YZ, Yang XJ (2014) Application of local fractional series expansion method to solve KleinGordon equations on Cantor set. Abstr Appl Anal 372–741

  35. Yang XJ (2012) Advanced local fractional calculus and its applications. World Science, New York

    Google Scholar 

  36. Razminia K, Razminia A, Machado JAT (2016) Analytical solution of fractional order diffusivity equation with Wellbore storage and skin effects. ASME J Comput Nonlinear Dyn 11(1):011006

    Article  Google Scholar 

  37. Duan JS, Rach R, Buleanu D, Wazwaz AM (2012) A review of the Adomian decomposition method and its applications to fractional differential equations. Commun Fract Calc 3(2):73–99

    Google Scholar 

  38. Das S, Kumar R (2011) Approximate analytical solutions of fractional gas dynamic equations. Appl Math Comput 217(24):9905–9915

    MathSciNet  MATH  Google Scholar 

  39. Kumar S (2013) A numerical study for solution of time fractional nonlinear shallow-water equation in oceans. Zeitschrift fur Naturforschung A 68a:1–7

    Article  Google Scholar 

  40. Kumar S, Kumar A, Baleanu D (2016) Two analytical methods for time-fractional nonlinear coupled Boussinesq–Burger’s equations arise in propagation of shallow water waves. Non-linear Dyn. https://doi.org/10.1007/s11071-016-2716-2

  41. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, San Diego

    MATH  Google Scholar 

  42. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  43. Gupta S, Kumar D, Singh J (2015) Numerical study for systems of fractional differential equations via Laplace transform. J Egypt Math Soc 23(2):256–262

    Article  MathSciNet  MATH  Google Scholar 

  44. Kumar D, Singh J, Kumar S (2015) Analytical modeling for fractional multi-dimensional diffusion equations by using Laplace transform. Commun Numer Anal 1:16–29

    Article  MathSciNet  Google Scholar 

  45. Kazem S, Abbasbandy S, Kumar Sunil (2013) Fractional-order Legendre functions for solving fractional-order differential equations. Appl Math Model 37:5498–5510

    Article  MathSciNet  MATH  Google Scholar 

  46. Biazar J, Mostafa E (2011) Differential transform method for nonlinear fractional gas dynamics equation. Int J Phys Sci 6(5):1203–1206

    Google Scholar 

  47. Adomian G (1994) Solving frontier problems of physics: the decomposition method. Kluwer Academic Publishers, Boston

    Book  MATH  Google Scholar 

  48. Evans DJ, Bulut H (2002) A new approach to the gas dynamics equation: an application of the decomposition method. Int J Comput Math 79(7):817–822

    Article  MathSciNet  MATH  Google Scholar 

  49. Caputo M (1967) Linear models of dissipation whose Q is almost frequency independent. Part II J R Astr Soc 13 529:383–393

    ADS  Google Scholar 

  50. Shen J, Tang T (2005) High order numerical methods and algorithms. Chinese Science Press, Beijing

    Google Scholar 

  51. Liu Nanshan, Lin En-Bing (2009) Legendre wavelet method for numerical solutions of partial differential equation. Numer Methods Partial Differ Equ 26(1):81–94

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors also wish to thank Department of Science and Technology, Government of India for the financial sanction towards this work under FIST Programme SR\(\backslash \) FST\(\backslash \) MSI - 107 \(\backslash \) 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Krishnaveni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja Balachandar, S., Krishnaveni, K., Kannan, K. et al. Analytical Solution for Fractional Gas Dynamics Equation. Natl. Acad. Sci. Lett. 42, 51–57 (2019). https://doi.org/10.1007/s40009-018-0662-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40009-018-0662-x

Keywords

Mathematics Subject Classification

Navigation