Skip to main content

Advertisement

Log in

Microbial Community Level Physiological Profiles of Active Mud Volcano Soils in Andaman and Nicobar Islands

  • Short Communication
  • Published:
National Academy Science Letters Aims and scope Submit manuscript

Abstract

The aim of this work was to determine if any differences exist in the community-level physiological profiles (CLPP) in different regions of mud volcano. The microbial functional diversity in the four soils sampled in the vicinity of a mud volcano, Baratang, Andaman and Nicobar Islands, India, was determined using Biolog EcoPlates. Comparisons of the patterns of substrate use showed differences in the community composition, reflecting the heterogeneous distribution of microorganisms in this environment. The results showed statistically significant differences among different volcanic environments both by total colony-forming unit and by average well colour development. On the basis of similarity percentage analysis, it was found that i-erythritol was the most commonly used substrate, but substrates such as dl-glycerol phosphate (end mud volcano × point mud volcano), l-asparagine (end mud volcano × dried mud volcano) and ketobutyric acid (outside mud volcano × point mud volcano) were found in only one environment. The metabolic diversity varied depending on the environments compared, indicating specific utilization of compounds’ effect. Microbial response in terms of the overall metabolic activity in outside mud volcano was higher than in other inside mud volcano soils. To the best of our knowledge, this is the first attempt to use CLPP study in volcanic environments in the Andaman and Nicobar Islands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Beulig F, Heuer VB, Akob DM, Viehweger B, Elvert M, Herrmann M, Hinrichs KU, Küsel K (2015) Carbon flow from volcanic CO2 into soil microbial communities of a wetland mofette. ISME J 9:746–759

    Article  PubMed  CAS  Google Scholar 

  2. Gittel A, Bárta J, Kohoutová I et al (2014) Distinct microbial communities associated with buried soils in the Siberian tundra. ISME J 8:841–853

    Article  PubMed  CAS  Google Scholar 

  3. Vetriani C, Voordeckers JW, Crespo-Medina M et al (2014) Deep-sea hydrothermal vent Epsilonproteobacteria encode a conserved and widespread nitrate reduction pathway (Nap). ISME J 8:1510–1521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  5. Pietikäinen J, Hiukka R, Fritze H (2000) Does short-term heating of forest humus change its properties as a substrate for microbes? Soil Biol Biochem 32:277–288

    Article  Google Scholar 

  6. Niemann H, Lösekann T, DeBeer D et al (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443:854–858

    Article  ADS  PubMed  CAS  Google Scholar 

  7. Jackson ML (1973) Soil chemical analysis. New Delhi, Prentice Hall of India (P) Ltd

    Google Scholar 

  8. Smalla K, Wachtendorf U, Heuer H, Liu WT, Forney L (1998) Analysis of BIOLOG GN substrate utilization patterns by microbial communities. Appl Environ Microbiol 64:1220–1225

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Nallanchakravarthula S, Mahmood S, Alström S, Finlay RD (2014) Influence of soil type, cultivar and Verticillium dahliae on the structure of the root and rhizosphere soil fungal microbiome of strawberry. PLoS ONE 9:e111455

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  11. Robach MC (1978) Effect of potassium sorbate on the growth of Pseudomonas fluorescens. J Food Sci 43:1886–1887

    Article  CAS  Google Scholar 

  12. Banning NC, Lalor BM, Cookson WR, Grigg AH, Murphy DV (2012) Analysis of soil microbial community level physiological profiles in native and post-mining rehabilitation forest: which substrates discriminate? Appl Soil Ecol 56:27–34

    Article  Google Scholar 

  13. Wawszkiewicz EJ, Barker HA (1968) Erythritol Metabolism by Propionibacterium pentosaceum the over-all reaction sequence. J Biol Chem 243:1948–1956

    PubMed  CAS  Google Scholar 

  14. Geddes BA, Hausner G, Oresnik IJ (2013) Phylogenetic analysis of erythritol catabolic loci within the Rhizobiales and Proteobacteria. BMC Microbiol 13:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Barbier T, Collard F, Zúñiga-Ripa A et al (2014) Erythritol feeds the pentose phosphate pathway via three new isomerases leading to D-erythrose-4-phosphate in Brucella. Proc Natl Acad Sci USA 111:17815–17820

    Article  ADS  PubMed  CAS  Google Scholar 

  16. Janniche GS, Spliid H, Albrechtsen HJ (2012) Microbial community-level physiological profiles (CLPP) and herbicide mineralization potential in groundwater affected by agricultural land use. J Contam Hydrol 140:45–55

    Article  PubMed  CAS  Google Scholar 

  17. Clegg CD, Lovell RDL, Hobbs PJ (2003) The impact of grassland management regime on the community structure of selected bacterial groups in soils. FEMS Microbiol Ecol 43:263–270

    Article  PubMed  CAS  Google Scholar 

  18. Wu J, Liu Z, Wang X et al (2011) Effects of understory removal and tree girdling on soil microbial community composition and litter decomposition in two Eucalyptus plantations in South China. Funct Ecol 25:921–931

    Article  Google Scholar 

  19. Rosberg AK, Gruyer N, Hultberg M, Wohanka W, Alsanius BW (2014) Monitoring rhizosphere microbial communities in healthy and Pythium ultimum inoculated tomato plants in soilless growing systems. Sci Hortic 173:106–113

    Article  Google Scholar 

  20. Srinivas TNR, Kumar PA, Madhu S, Sunil B, Sharma TVRS, Shivaji S (2011) Cesiribacter andamanensis gen. nov., sp. nov., isolated from a soil sample from a mud volcano. Int J Syst Evol Microbiol 61:1521–1527

    Article  PubMed  CAS  Google Scholar 

  21. Kumar PA, Srinivas TNR, Manasa P, Madhu S, Shivaji S (2012) Lutibaculum baratangense gen. nov., sp. nov., a proteobacterium isolated from a mud volcano. Int J Syst Evol Microbiol 62:2025–2031

    Article  PubMed  CAS  Google Scholar 

  22. Pessi IS, Elias SDO, Simões FL, Simões JC, Macedo AJ (2012) Functional diversity of microbial communities in soils in the vicinity of Wanda Glacier, Antarctic Peninsula. Microbes Environ 27:200–203

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank due to research was supported by grants from National networking project entitled “Application of Microorganisms in Agriculture and Allied Sectors” of the National Bureau of Agriculturally Important Microorganisms-Indian Council of Agricultural Research (NBAIM-ICAR), Uttar Pradesh, Mau, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amaresan, N., Kumar, K., Venkadesaperumal, G. et al. Microbial Community Level Physiological Profiles of Active Mud Volcano Soils in Andaman and Nicobar Islands. Natl. Acad. Sci. Lett. 41, 161–164 (2018). https://doi.org/10.1007/s40009-018-0632-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40009-018-0632-3

Keywords

Navigation