National Academy Science Letters

, Volume 41, Issue 3, pp 151–154 | Cite as

Performance Investigation of 1.68 Tb/s Spectral Efficient Hybrid OTDM–WDM System Using Orthogonal Modulation Format

  • Simranjit SinghEmail author
Short Communication


In this paper, the performance of return-to-zero/differential quadrature phase shift keying/polarization shift keying (RZ/DQPSK/PolSK) orthogonal modulation format is investigated in hybrid optical time division and wavelength division multiplexing (OTDM–WDM) technique to increase the spectral efficiency of the system. The error free performance is achieved over 140 km transmission with the acceptable bit error rate (~ 10−12). The original contribution of this paper is to propose a bandwidth efficient OTDM–WDM system that could be projected even in high speed scenario and expected to be more technical viable due to use of optical orthogonal modulation formats.


Orthogonal modulation OTDM–WDM system High speed Spectral efficiency 

Supplementary material

40009_2018_628_MOESM1_ESM.docx (550 kb)
Supplementary material 1 (DOCX 549 kb)


  1. 1.
    Weinert CM, Ludwig R, Weber HG, Breuer D, Petermann K, Kuppers F (1999) 40 Gb/s and 4 × 40 Gb/s TDM/WDM standard fiber transmission. J Lightw Technol 17(11):2276–2284ADSCrossRefGoogle Scholar
  2. 2.
    Gong T, Yan F, Lu D, Chen M, Liu P, Tao P, Wang M, Li T, Jian S (2009) Demonstration of single channel 160-Gb/s OTDM 100-km transmission system. Opt Commun 282(17):3460–3463ADSCrossRefGoogle Scholar
  3. 3.
    Schubert C et al (2002) Comparison of interferometric all-optical switches for demultiplexing applications in high-speed OTDM systems. IEEE J Lightw Technol 20(4):618–624ADSCrossRefGoogle Scholar
  4. 4.
    Murari H, Kagawa M, Tsuji H, Fujii K (2007) EA-modulator based optical time division multiplexing/de-multiplexing techniques for 160 Gbs optical signal transmission. IEEE J Sel Top Quantum Electron 13(1):70–78ADSCrossRefGoogle Scholar
  5. 5.
    Bogoni A, Poti L, Ghelfi P, Scaffardi M, Porzi C, Ponzini F, Meloni G, Berrettini G, Malacarne A, Prati G (2007) OTDM-based optical communications networks at 160 Gbit/s and beyond. Opt Fiber Technol 13(1):1–12ADSCrossRefGoogle Scholar
  6. 6.
    Makovejs S, Gavioli G, Mikhailov V, Killey RI, Bayvel P (2008) Experimental and numerical investigation of bitwise phase-control OTDM transmission. Opt Exp 16(23):18725–18730ADSCrossRefGoogle Scholar
  7. 7.
    Nakazawa M, Kasai K, Yoshida M, Hirooka T (2011) Novel RZ-CW conversion scheme for ultra multi-level, high-speed coherent OTDM transmission. Opt Exp 19(26):574–580CrossRefGoogle Scholar
  8. 8.
    Gousia GMR, Sharma AK (2010) WDM–OTDM based spectral efficient hybrid multiplexing technique inherent with properties of bandwidth elasticity and scalability. Optik 121(11):11036–11041CrossRefGoogle Scholar
  9. 9.
    Chi N, Zhang J, Holm-Nielsen PV, Peucheret C, Jeppesen P (2003) Transmission and transparent wavelength conversion of an optical labeled signal using ASK/DPSK orthogonal modulation. IEEE Photon Technol Lett 15(5):760–762ADSCrossRefGoogle Scholar
  10. 10.
    Ohm M, Speidel J (2003) Quaternary optical ASK-DPSK and receiver with direct detection. IEEE Photon Technol Lett 15(1):159–161ADSCrossRefGoogle Scholar
  11. 11.
    Shao Y, Chen L, Wen S, Xiao Y, Cheng L, Xu H, Pi Y (2008) Novel optical orthogonally modulated schemes for superimposing DPSK signals on the dark RZ signals. Opt Commun 281(14):3658–3667ADSCrossRefGoogle Scholar
  12. 12.
    Chow CW, Kwok CH, Tsang HK, Lin C (2006) 3-Bit/symbol optical data format based on simultaneously DRZ.DPSK and PolSK orthogonal modulations. Opt Exp 14(5):1720–1725ADSCrossRefGoogle Scholar
  13. 13.
    Xiang Z, Ye P, Guan KJ, Lin JT (1998) Theoretical analysis of an OTDM frame synchronization scheme. Opt Commun 154(1–3):19–22ADSCrossRefGoogle Scholar
  14. 14.
    Chow CW, Ellis AD, Cotter D (2007) Asynchronous digital optical regenerator for 4 × 40 Gbit/s WDM to 160 Gbit/s OTDM conversion. Opt Exp 15(14):8507–8515ADSCrossRefGoogle Scholar
  15. 15.
    Singh S, Kaler RS (2012) Investigation of hybrid amplifier for dance wavelength division multiplexing system with reduced spacing at higher bit. Int J Fiber Integr Opt 31(3):208–220ADSCrossRefGoogle Scholar
  16. 16.
    Singh S, Kaler RS (2013) Flat Gain L-Band Raman-EDFA Hybrid Optical Amplifier for Dence Wavelength Division Multiplexed system. IEEE Photon. Technol. Lett. 25(3):250–252ADSCrossRefGoogle Scholar
  17. 17.
    Singh S, Kaler RS (2012) Performance Evaluation of 64 × 10 Gbps and 94 × 10 Gbps DWDM system with hybrid amplifier for different modulation formats. Optik 123(24):2199–2203ADSCrossRefGoogle Scholar
  18. 18.
    Singh S, Kaur R, Singh S, Kaler RS (2015) Novel security enhancement technique against eavesdropper for OCDMA system using 2-D modulation format with code switching scheme. Opt Fiber Technol 22:84–89ADSCrossRefGoogle Scholar
  19. 19.
    Singh S, Singh S, Kaur R, Kaler RS (2015) Performance investigation of optical multicast overlay system using orthogonal modulation format. Opt Commun 338:58–63ADSCrossRefGoogle Scholar

Copyright information

© The National Academy of Sciences, India 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringPunjabi UniversityPatialaIndia

Personalised recommendations