Application of diethylene glycol monoethyl ether in solubilization of poorly water-soluble drugs

Abstract

Background

Diethylene glycol monoethyl ether (DEGEE) is produced via the O-alkylation of ethanol with two ethylene oxide units, followed by distillation. It has a long history of safe use in food and personal-care products, and is used as an effective strong solubilizer in oral, topical, transdermal, and injectable human and veterinary pharmaceutical products. It has been used as a pharmaceutical solvent for many years under the trade name transcutol. DEGEE, a hydroalcoholic solvent, is gaining interest as a penetration/permeation enhancer, solubilizer, and surfactant for drug delivery systems.

Area covered

The physicochemical properties of DEGEE, the solubility data for drugs in DEGEE or DEGEE-water mixtures, and the applications of DEGEE in the solubilization of poorly water-soluble drugs are summarized in this review.

Expert opinion

DEGEE is a promising excipient as a solubilizer for many pharmaceutical products with enhanced drug absorption via oral, parenteral, and topical administration, as well as cosmetic products.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Abdou EM, Kandil SM, El Miniawy HMF (2017) Brain targeting efficiency of antimigrain drug loaded mucoadhesive intranasal nanoemulsion. Int J Pharm 529(1–2):667–677

    CAS  PubMed  Google Scholar 

  2. Agrawal AG, Kumar A, Gide PS (2014) Formulation development and in vivo hepatoprotective activity of self nanoemulsifying drug delivery system of antioxidant coenzyme Q 10. Arch Pharm Res. https://doi.org/10.1007/s12272-014-0497-z

    Article  PubMed  Google Scholar 

  3. Agrawal AG, Kumar A, Gide PS (2015) Self emulsifying drug delivery system for enhanced solubility and dissolution of glipizide. Colloids Surf B Biointerfaces 126:553–560

    CAS  PubMed  Google Scholar 

  4. Akhter MH, Ahmad A, Ali J, Mohan G (2014) Formulation and development of CoQ10-loaded s-SNEDDS for enhancement of oral bioavailability. J Pharm Innov 9(2):121–131

    Google Scholar 

  5. Al Abood RM, Talegaonkar S, Tariq M, Ahmad FJ (2013) Microemulsion as a tool for the transdermal delivery of ondansetron for the treatment of chemotherapy induced nausea and vomiting. Colloids Surf B Biointerfaces 101:143–151

    CAS  PubMed  Google Scholar 

  6. Alshehri S, Shakeel F (2017) Solubility measurement, thermodynamics and molecular interactions of flufenamic acid in different neat solvents. J Mol Liq 240:447–453

    CAS  Google Scholar 

  7. Arora R, Aggarwal G, Harikumar S (2014) Kaur K (2014) Nanoemulsion based hydrogel for enhanced transdermal delivery of ketoprofen. Adv Pharm. https://doi.org/10.1155/2014/468456

    Article  Google Scholar 

  8. Azeem A, Khan ZI, Aqil M, Ahmad FJ, Khar RK, Talegaonkar S (2009) Microemulsions as a surrogate carrier for dermal drug delivery. Drug Dev Ind Pharm 35(5):525–547

    CAS  PubMed  Google Scholar 

  9. Bachhav YG, Patravale VB (2009) SMEDDS of glyburide: formulation, in vitro evaluation, and stability studies. AAPS PharmSciTech 10(2):482–487

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Baek MK, Lee JH, Cho YH, Kim HH, Lee GW (2013) Self-microemulsifying drug-delivery system for improved oral bioavailability of pranlukast hemihydrate: preparation and evaluation. Int J Nanomed 8:167–176

    Google Scholar 

  11. Balakrishnan P, Lee B-J, Oh DH, Kim JO, Lee Y-I, Kim D-D, Jee J-P, Lee Y-B, Woo JS, Yong CS (2009) Enhanced oral bioavailability of Coenzyme Q10 by self-emulsifying drug delivery systems. Int J Pharm 374(1–2):66–72

    CAS  PubMed  Google Scholar 

  12. Barot BS, Parejiya PB, Patel HK, Gohel MC, Shelat PK (2012) Microemulsion-based gel of terbinafine for the treatment of onychomycosis: optimization of formulation using D-optimal design. AAPS PharmSciTech 13(1):184–192

    CAS  PubMed  Google Scholar 

  13. Barzegar-Jalali M, Rahimpour E, Martinez F, Jouyban A (2018) Generally trained models to predict drug solubility in methanol + water mixtures. J Mol Liq 264:631–644

    CAS  Google Scholar 

  14. Basalious EB, Shawky N, Badr-Eldin SM (2010) SNEDDS containing bioenhancers for improvement of dissolution and oral absorption of lacidipine. I: development and optimization. Int J Pharm 391(1–2):203–211

    CAS  PubMed  Google Scholar 

  15. Beg S, Sharma G, Rahman M, Swain S (2016) Lipid-based nanostructured drug delivery systems for oral bioavailability enhancement of poorly water-soluble drugs. In: Swain S, Patra CN, Rao ME (eds) Pharmaceutical drug delivery systems and vehicles, 1st edn. WPI Publishing, New Delhi, pp 83–114

    Google Scholar 

  16. Bergström CAS, Norinder U, Luthman K, Artursson P (2002) Experimental and computational screening models for prediction of aqueous drug solubility. Pharm Res 19(2):182–188

    PubMed  Google Scholar 

  17. Bhatia G, Zhou Y, Banga AK (2013) Adapalene microemulsion for transfollicular drug delivery. J Pharm Sci 102(8):2622–2631

    CAS  PubMed  Google Scholar 

  18. Chadha G, Sathigari S, Parsons DL, Babu RJ (2011) In vitro percutaneous absorption of genistein from topical gels through human skin. Drug Dev Ind Pharm 37(5):498–505

    CAS  PubMed  Google Scholar 

  19. Chavda H, Patel J, Chavada G, Dave S, Patel A, Patel C (2013) Self-nanoemulsifying powder of isotretinoin: preparation and characterization. J Powder Technol 2013:9

    Google Scholar 

  20. Chen Y, Li G, Wu X, Chen Z, Hang J, Qin B, Chen S, Wang R (2008) Self-microemulsifying drug delivery system (SMEDDS) of vinpocetine: formulation development and in vivo assessment. Biol Pharm Bull 31(1):118–125

    CAS  PubMed  Google Scholar 

  21. Chen C-H, Chang C-C, Shih T-H, Aljuffali IA, Yeh T-S, Fang J-Y (2015) Self-nanoemulsifying drug delivery systems ameliorate the oral delivery of silymarin in rats with Roux-en-Y gastric bypass surgery. Int J Nanomed 10:2403–2416

    CAS  Google Scholar 

  22. Cho Y-J, Choi H-K (1998) Enhancement of percutaneous absorption of ketoprofen: effect of vehicles and adhesive matrix. Int J Pharm 169(1):95–104

    CAS  Google Scholar 

  23. Cho Y-D, Park Y-J (2014) In vitro and in vivo evaluation of a self-microemulsifying drug delivery system for the poorly soluble drug fenofibrate. Arch Pharm Res 37(2):193–203

    CAS  PubMed  Google Scholar 

  24. Cho HJ, Lee DW, Marasini N, Poudel BK, Kim JH, Ramasamy T, Yoo BK, Choi HG, Yong CS, Kim JO (2013) Optimization of self-microemulsifying drug delivery system for telmisartan using Box-Behnken design and desirability function. J Pharm Pharmacol 65(10):1440–1450

    CAS  PubMed  Google Scholar 

  25. Choi YK, Poudel BK, Marasini N, Yang KY, Kim JW, Kim JO, Choi H-G, Yong CS (2012) Enhanced solubility and oral bioavailability of itraconazole by combining membrane emulsification and spray drying technique. Int J Pharm 434(1–2):264–271

    CAS  PubMed  Google Scholar 

  26. Choo G-H, Park S-J, Hwang S-J, Kim M-S (2013) Formulation and in vivo evaluation of a self-microemulsifying drug delivery system of dutasteride. Drug Res 63(04):203–209

    Google Scholar 

  27. Dhawan B, Aggarwal G, Harikumar S (2014) Enhanced transdermal permeability of piroxicam through novel nanoemulgel formulation. Int J Pharm Investig 4(2):65–76

    CAS  PubMed  PubMed Central  Google Scholar 

  28. El-Badry M, Haq N, Fetih G, Shakeel F (2014) Measurement and correlation of tadalafil solubility in five pure solvents at (298.15 to 333.15) K. J Chem Eng Data 59(3):839–843

    CAS  Google Scholar 

  29. Elshafeey AH, Bendas ER, Mohamed OH (2009) Intranasal microemulsion of sildenafil citrate: in vitro evaluation and in vivo pharmacokinetic study in rabbits. AAPS PharmSciTech 10(2):361–367

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Elshafeey AH, Hamza YE, Amin SY, Akhlaghi F, Zia H (2011) Enhanced bioavailability of fenoterol transdermal systems in rabbits. J Bioequiv Availab 3(5):97–100

    CAS  Google Scholar 

  31. Fouad SA, Basalious EB, El-Nabarawi MA, Tayel SA (2013) Microemulsion and poloxamer microemulsion-based gel for sustained transdermal delivery of diclofenac epolamine using in-skin drug depot: in vitro/in vivo evaluation. Int J Pharm 453(2):569–578

    CAS  PubMed  Google Scholar 

  32. Franceschinis E, Bortoletto C, Perissutti B, Dal Zotto M, Voinovich D, Realdon N (2011) Self-emulsifying pellets in a lab-scale high shear mixer: formulation and production design. Powder Technol 207(1–3):113–118

    CAS  Google Scholar 

  33. Froelich A, Osmałek T, Snela A, Kunstman P, Jadach B, Olejniczak M, Roszak G, Białas W (2017) Novel microemulsion-based gels for topical delivery of indomethacin: formulation, physicochemical properties and in vitro drug release studies. J Colloid Interface Sci 507:323–336

    CAS  PubMed  Google Scholar 

  34. Gandra SC, Nguyen S, Nazzal S, Alayoubi A, Jung R, Nesamony J (2015) Thermoresponsive fluconazole gels for topical delivery: rheological and mechanical properties, in vitro drug release and anti-fungal efficacy. Pharm Dev Technol 20(1):41–49

    CAS  PubMed  Google Scholar 

  35. Ganem-Quintanar A, Lafforgue C, Falson-Rieg F, Buri P (1997) Evaluation of the transepidermal permeation of diethylene glycol monoethyl ether and skin water loss. Int J Pharm 147(2):165–171

    CAS  Google Scholar 

  36. Gao Z-G, Choi H-G, Shin H-J, Park K-M, Lim S-J, Hwang K-J, Kim C-K (1998) Physicochemical characterization and evaluation of a microemulsion system for oral delivery of cyclosporin A. Int J Pharm 161(1):75–86

    CAS  Google Scholar 

  37. Ge S, Lin Y, Lu H, Li Q, He J, Chen B, Wu C, Xu Y (2014) Percutaneous delivery of econazole using microemulsion as vehicle: formulation, evaluation and vesicle-skin interaction. Int J Pharm 465(1–2):120–131

    CAS  PubMed  Google Scholar 

  38. Gwak HS, Chun IK (2002) Effect of vehicles and penetration enhancers on the in vitro percutaneous absorption of tenoxicam through hairless mouse skin. Int J Pharm 236(1–2):57–64

    CAS  PubMed  Google Scholar 

  39. Ha E-S, Lee Y-R, Kim M-S (2016) Solubility of dronedarone hydrochloride in six pure solvents at the range of 298.15 to 323.15K. J Mol Liq 216:360–363

    CAS  Google Scholar 

  40. Ha E-S, Kuk D-H, Ha D-H, Sim W-Y, I-h Baek, Kim J-S, Kim M-S (2017a) Determination and correlation of solubility of sarpogrelate hydrochloride in eight solvents at different temperatures. J Mol Liq 237:141–145

    CAS  Google Scholar 

  41. Ha E-S, Kim J-S, Kuk D-H, Ha D-H, I-h Baek, Kim M-S (2017b) Determination and correlation of solubility of pranlukast hemihydrate in five organic solvents at different temperatures and its dissolution properties. J Mol Liq 225:231–234

    CAS  Google Scholar 

  42. Ha E-S, Kuk D-H, Kim J-S, Kim M-S (2019) Solubility of trans-resveratrol in transcutol HP + water mixtures at different temperatures and its application to fabrication of nanosuspensions. J Mol Liq 281:344–351

    CAS  Google Scholar 

  43. Hajjar B, Zier K-I, Khalid N, Azarmi S, Löbenberg R (2018) Evaluation of a microemulsion-based gel formulation for topical drug delivery of diclofenac sodium. J Pharm Investig 48(3):351–362

    CAS  Google Scholar 

  44. Hansen CM (2007) Hansen solubility parameters: a user’s handbook. CRC Press, New York

    Google Scholar 

  45. Haq A, Michniak-Kohn B (2018) Effects of solvents and penetration enhancers on transdermal delivery of thymoquinone: permeability and skin deposition study. Drug Deliv 25(1):1943–1949

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hong J-Y, Kim J-K, Song Y-K, Park J-S, Kim C-K (2006) A new self-emulsifying formulation of itraconazole with improved dissolution and oral absorption. J Control Release 110(2):332–338

    CAS  PubMed  Google Scholar 

  47. Hu L, Wu H, Niu F, Yan C, Yang X, Jia Y (2011a) Design of fenofibrate microemulsion for improved bioavailability. Int J Pharm 420(2):251–255

    CAS  PubMed  Google Scholar 

  48. Hu L, Yang J, Liu W, Li L (2011b) Preparation and evaluation of ibuprofen-loaded microemulsion for improvement of oral bioavailability. Drug Deliv 18(1):90–95

    CAS  PubMed  Google Scholar 

  49. Hu L, Jia Y, Niu F, Jia Z, Yang X, Jiao K (2012) Preparation and enhancement of oral bioavailability of curcumin using microemulsions vehicle. J Agric Food Chem 60(29):7137–7141

    CAS  PubMed  Google Scholar 

  50. Hu L, Hu Q, Yang J (2014) Enhancement of transdermal delivery of ibuprofen using microemulsion vehicle. Iran J Basic Med Sci 17(10):760–766

    PubMed  PubMed Central  Google Scholar 

  51. Hua L, Weisan P, Jiayu L, Hongfei L (2004a) Preparation and evaluation of microemulsion of vinpocetine for transdermal delivery. Pharmazie 59(4):274–278

    CAS  PubMed  Google Scholar 

  52. Hua L, Weisan P, Jiayu L, Ying Z (2004b) Preparation, evaluation, and NMR characterization of vinpocetine microemulsion for transdermal delivery. Drug Dev Ind Pharm 30(6):657–666

    CAS  PubMed  Google Scholar 

  53. Hussain A, Samad A, Singh S, Ahsan M, Haque M, Faruk A, Ahmed F (2016) Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation. Drug Deliv 23(2):642–657

    CAS  PubMed  Google Scholar 

  54. Ilem-Ozdemir D, Gundogdu E, Ekinci M, Ozgenc E, Asikoglu M (2015) Comparative permeability studies with radioactive and nonradioactive risedronate sodium from self-microemulsifying drug delivery system and solution. Drug Dev Ind Pharm 41(9):1493–1498

    CAS  PubMed  Google Scholar 

  55. Jain R, Patravale VB (2009) Development and evaluation of nitrendipine nanoemulsion for intranasal delivery. J Biomed Nanotechnol 5(1):62–68

    CAS  PubMed  Google Scholar 

  56. Jakki R, Syed MA, Kandadi P, Veerabrahma K (2013) Development of a self-microemulsifying drug delivery system of domperidone: in vitro and in vivo characterization. Acta Pharm 63(2):241–251

    CAS  PubMed  Google Scholar 

  57. Jannin V, Chevrier S, Michenaud M, Dumont C, Belotti S, Chavant Y, Demarne F (2015) Development of self emulsifying lipid formulations of BCS class II drugs with low to medium lipophilicity. Int J Pharm 495(1):385–392

    CAS  PubMed  Google Scholar 

  58. Javadzadeh Y, Hamishehkar H (2011) Enhancing percutaneous delivery of methotrexate using different types of surfactants. Colloids Surf B Biointerfaces 82(2):422–426

    CAS  PubMed  Google Scholar 

  59. Jouyban A (2008) Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures. J Pharm Pharm Sci 11(1):32–58

    CAS  PubMed  Google Scholar 

  60. Jouyban A (2010) Handbook of solubility data for pharmaceuticals. CRC Press, New York

    Google Scholar 

  61. Jouyban A, Acree WE (2018) Mathematical derivation of the Jouyban-Acree model to represent solute solubility data in mixed solvents at various temperatures. J Mol Liq 256:541–547

    CAS  Google Scholar 

  62. Kalam MA, Khan AA, Alshamsan A, Haque A, Shakeel F (2018) Solubility of a poorly soluble immunosuppressant in different pure solvents: measurement, correlation, thermodynamics and molecular interactions. J Mol Liq 249:53–60

    Google Scholar 

  63. Kamble RN, Mehta PP, Kumar A (2016) Efavirenz self-nano-emulsifying drug delivery system: in vitro and in vivo evaluation. AAPS PharmSciTech 17(5):1240–1247

    CAS  PubMed  Google Scholar 

  64. Kamboj S, Rana V (2016) Quality-by-design based development of a self-microemulsifying drug delivery system to reduce the effect of food on Nelfinavir mesylate. Int J Pharm 501(1–2):311–325

    CAS  PubMed  Google Scholar 

  65. Kang JH, Oh DH, Oh Y-K, Yong CS, Choi H-G (2012) Effects of solid carriers on the crystalline properties, dissolution and bioavailability of flurbiprofen in solid self-nanoemulsifying drug delivery system (solid SNEDDS). Eur J Pharm Biopharm 80(2):289–297

    CAS  PubMed  Google Scholar 

  66. Kassem AM, Ibrahim HM, Samy AM (2017) Development and optimisation of atorvastatin calcium loaded self-nanoemulsifying drug delivery system (SNEDDS) for enhancing oral bioavailability: in vitro and in vivo evaluation. J Microencapsul 34(3):319–333

    CAS  PubMed  Google Scholar 

  67. Khoubnasabjafari M, Shayanfar A, Martinez F, Acree WE, Jouyban A (2016) Generally trained models to predict solubility of drugs in carbitol + water mixtures at various temperatures. J Mol Liq 219:435–438

    CAS  Google Scholar 

  68. Kikwai L, Kanikkannan N, Babu R, Singh M (2002) Effect of vehicles on the transdermal delivery of melatonin across porcine skin in vitro. J Control Release 83(2):307–311

    CAS  PubMed  Google Scholar 

  69. Kim C-K, Hwang Y-Y, Chang JY, Choi H-G, Lim S-J, Lee M-K (2001) Development of a novel dosage form for intramuscular injection of titrated extract of Centella asiatica in a mixed micellar system. Int J Pharm 220(1):141–147

    CAS  PubMed  Google Scholar 

  70. Kim M-S, Ha E-S, Choo G-H, Baek I-H (2015) Preparation and in vivo evaluation of a dutasteride-loaded solid-supersaturatable self-microemulsifying drug delivery system. Int J Mol Sci 16(5):10821–10833

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim J, Ramasamy T, Choi JY, Kim ST, Youn YS, Choi H-G, Yong CS, Kim JO (2017) PEGylated polypeptide lipid nanocapsules to enhance the anticancer efficacy of erlotinib in non-small cell lung cancer. Colloids Surf B Biointerfaces 150:393–401

    CAS  PubMed  Google Scholar 

  72. Kim J-S, Kim M-S, Baek I-H (2018a) Enhanced bioavailability of tadalafil after intranasal administration in beagle dogs. Pharmaceutics 10(4):187–195

    CAS  PubMed Central  Google Scholar 

  73. Kim M-S, Ha E-S, Kuk D-H, Ha D-H, Sim W-Y (2018b) Method for manufacturing nanosuspension comprising insoluble drug using bottom-up method and nanosuspension made thereby. KR 10-2018-0096085

  74. Kumar A, Sharma P, Chaturvedi A, Jaiswal D, Bajpai M, Choudhary M, Yadav IK, Singh HP, Chandra D, Jain D (2009a) Formulation development of sertraline hydrochloride microemulsion for intranasal delivery. Int J Chemtech Res 1(4):941–947

    CAS  Google Scholar 

  75. Kumar D, Aqil M, Rizwan M, Sultana Y, Ali M (2009b) Investigation of a nanoemulsion as vehicle for transdermal delivery of amlodipine. Pharmazie 64(2):80–85

    CAS  PubMed  Google Scholar 

  76. Lee E-A, Balakrishnan P, Song C-K, Choi J-H, Noh G-Y, Park C-G, Choi A-J, Chung S-J, Shim C-K, Kim D-D (2010) Microemulsion-based hydrogel formulation of itraconazole for topical delivery. J Pharm Investig 40(5):305–311

    CAS  Google Scholar 

  77. Lee DH, Yeom DW, Song YS, Cho HR, Choi YS, Kang MJ, Choi YW (2015) Improved oral absorption of dutasteride via Soluplus®-based supersaturable self-emulsifying drug delivery system (S-SEDDS). Int J Pharm 478(1):341–347

    CAS  PubMed  Google Scholar 

  78. Li W, Yi S, Wang Z, Chen S, Xin S, Xie J, Zhao C (2011) Self-nanoemulsifying drug delivery system of persimmon leaf extract: optimization and bioavailability studies. Int J Pharm 420(1):161–171

    CAS  PubMed  Google Scholar 

  79. Li L, Yi T, Lam CW-K (2013) Effects of spray-drying and choice of solid carriers on concentrations of Labrasol® and transcutol® in solid self-microemulsifying drug delivery systems (SMEDDS). Molecules 18(1):545–560

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Li H, Pan T, Cui Y, Li X, Gao J, Yang W, Shen S (2016) Improved oral bioavailability of poorly water-soluble glimepiride by utilizing microemulsion technique. Int J Nanomed 11:3777–3788

    CAS  Google Scholar 

  81. Liu Y, Chen ZQ, Zhang X, Feng NP, Zhao JH, Wu S, Tan R (2010) An improved formulation screening and optimization method applied to the development of a self-microemulsifying drug delivery system. Chem Pharm Bull 58(1):16–22

    CAS  PubMed  Google Scholar 

  82. Liu W, Tian R, Hu W, Jia Y, Jiang H, Zhang J, Zhang L (2012) Preparation and evaluation of self-microemulsifying drug delivery system of baicalein. Fitoterapia 83(8):1532–1539

    CAS  PubMed  Google Scholar 

  83. Liu X, Feng X, Williams RO, Zhang F (2018) Characterization of amorphous solid dispersions. J Pharm Investig 48(1):19–41

    Google Scholar 

  84. Ma H, Zhao Q, Wang Y, Guo T, An Y, Shi G (2012) Design and evaluation of self-emulsifying drug delivery systems of Rhizoma corydalis decumbentis extracts. Drug Dev Ind Pharm 38(10):1200–1206

    CAS  PubMed  Google Scholar 

  85. Mahmoud H, Al-Suwayeh S, Elkadi S (2013) Design and optimization of self-nanoemulsifying drug delivery systems of simvastatin aiming dissolution enhancement. Afr J Pharm Pharmacol 7(22):1482–1500

    Google Scholar 

  86. Mahmoud DB, Shukr MH, Bendas ER (2014) In vitro and in vivo evaluation of self-nanoemulsifying drug delivery systems of cilostazol for oral and parenteral administration. Int J Pharm 476(1–2):60–69

    CAS  PubMed  Google Scholar 

  87. Mandal S (2011) Microemulsion drug delivery system: design and development for oral bioavailability enhancement of lovastatin. S Afr Pharm J 78(3):44–50

    Google Scholar 

  88. Mandal S, Mandal SS (2011) Research paper microemulsion drug delivery system: a platform for improving dissolution rate of poorly water soluble drug. Int J Pharm Sci Nanotech 3(4):1214–1219

    CAS  Google Scholar 

  89. Mandal S, Mandal SD, Surti N, Patel VB (2010) Development of microemulsion formulation for the solubility enhancement of flunarizine. Pharm Lett 2(3):227–236

    CAS  Google Scholar 

  90. Mantri SK, Pashikanti S, Murthy KR (2012) Development and characterization of self-nanoemulsifying drug delivery systems (SNEDDS) of atorvastatin calcium. Curr Drug Deliv 9(2):182–196

    CAS  PubMed  Google Scholar 

  91. Marasini N, Yan YD, Poudel BK, Choi HG, Yong CS, Kim JO (2012) Development and optimization of self-nanoemulsifying drug delivery system with enhanced bioavailability by Box-Behnken design and desirability function. J Pharm Sci 101(12):4584–4596

    CAS  PubMed  Google Scholar 

  92. Millard JW, Alvarez-Núñez FA, Yalkowsky SH (2002) Solubilization by cosolvents: establishing useful constants for the log–linear model. Int J Pharm 245(1):153–166

    CAS  PubMed  Google Scholar 

  93. Miyako Y, Khalef N, Matsuzaki K, Pinal R (2010) Solubility enhancement of hydrophobic compounds by cosolvents: role of solute hydrophobicity on the solubilization effect. Int J Pharm 393(1):48–54

    CAS  PubMed  Google Scholar 

  94. Moghimipour E, Salimi A, Leis F (2012) Preparation and evaluation of tretinoin microemulsion based on pseudo-ternary phase diagram. Adv Pharm Bull 2(2):141–147

    PubMed  PubMed Central  Google Scholar 

  95. Moghimipour E, Salimi A, Eftekhari S (2013a) Design and characterization of microemulsion systems for naproxen. Adv Pharm Bull 3(1):63–71

    PubMed  PubMed Central  Google Scholar 

  96. Moghimipour E, Salimi A, Karami M, Isazadeh S (2013b) Preparation and characterization of dexamethasone microemulsion based on pseudoternary phase diagram. Jundishapur J Nat Pharm Prod 8(3):105–112

    PubMed  PubMed Central  Google Scholar 

  97. Müllertz A, Ogbonna A, Ren S, Rades T (2010) New perspectives on lipid and surfactant based drug delivery systems for oral delivery of poorly soluble drugs. J Pharm Pharmacol 62(11):1622–1636

    PubMed  Google Scholar 

  98. Mura P, Bragagni M, Mennini N, Cirri M, Maestrelli F (2014) Development of liposomal and microemulsion formulations for transdermal delivery of clonazepam: effect of randomly methylated β-cyclodextrin. Int J Pharm 475(1–2):306–314

    CAS  PubMed  Google Scholar 

  99. Narayana L, Chella N, Kumar D, Shastri NR (2015) Design of a novel type IV lipid-based delivery system for improved delivery of drugs with low partition coefficient. J Liposome Res 25(4):325–333

    CAS  PubMed  Google Scholar 

  100. Nasr A, Gardouh A, Ghonaim H, Abdelghany E, Ghorab M (2016) Effect of oils, surfactants and cosurfactants on phase behavior and physicochemical properties of self-nanoemulsifying drug delivery system (SNEDDS) for irbesartan and olmesartan. Int J App Pharm 8:13–24

    CAS  Google Scholar 

  101. Nekkanti V, Karatgi P, Prabhu R, Pillai R (2010) Solid self-microemulsifying formulation for candesartan cilexetil. AAPS PharmSciTech 11(1):9–17

    CAS  PubMed  Google Scholar 

  102. Nesamony J, Kalra A, Majrad MS, Boddu SHS, Jung R, Williams FE, Schnapp AM, Nauli SM, Kalinoski AL (2013) Development and characterization of nanostructured mists with potential for actively targeting poorly water-soluble compounds into the lungs. Pharm Res 30(10):2625–2639

    CAS  PubMed  Google Scholar 

  103. Nesamony J, Shah IS, Kalra A, Jung R (2014) Nebulized oil-in-water nanoemulsion mists for pulmonary delivery: development, physico-chemical characterization and in vitro evaluation. Drug Dev Ind Pharm 40(9):1253–1263

    CAS  PubMed  Google Scholar 

  104. Oh DH, Kang JH, Kim DW, Lee B-J, Kim JO, Yong CS, Choi H-G (2011) Comparison of solid self-microemulsifying drug delivery system (solid SMEDDS) prepared with hydrophilic and hydrophobic solid carrier. Int J Pharm 420(2):412–418

    CAS  PubMed  Google Scholar 

  105. Osborne DW (2011) Diethylene glycol monoethyl ether: an emerging solvent in topical dermatology products. J Cosmet Dermatol 10(4):324–329

    PubMed  Google Scholar 

  106. Osborne DW, Musakhanian J (2018) Skin penetration and permeation properties of transcutol®—neat or diluted mixtures. AAPS PharmSciTech 19(8):3512–3533

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Panapisal V, Charoensri S, Tantituvanont A (2012) Formulation of microemulsion systems for dermal delivery of silymarin. AAPS PharmSciTech 13(2):389–399

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Parmar N, Singla N, Amin S, Kohli K (2011) Study of cosurfactant effect on nanoemulsifying area and development of lercanidipine loaded (SNEDDS) self nanoemulsifying drug delivery system. Colloids Surf B Biointerfaces 86(2):327–338

    CAS  PubMed  Google Scholar 

  109. Patel RB, Patel MR, Bhatt KK, Patel BG (2013) Formulation consideration and characterization of microemulsion drug delivery system for transnasal administration of carbamazepine. Bull Fac Pharm Cairo Univ 51(2):243–253

    Google Scholar 

  110. Patharkar P, Tarkase K (2017) Development and evaluation of solid self emulsifying drug delivery system of olmesartan medoxomil by using adsorption to solid carrier techniques. Int J Drug Res Tech 6(3):209–227

    Google Scholar 

  111. Pawar SK, Vavia PR (2012) Rice germ oil as multifunctional excipient in preparation of self-microemulsifying drug delivery system (SMEDDS) of tacrolimus. AAPS PharmSciTech 13(1):254–261

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Prajapati ST, Joshi HA, Patel CN (2012) Preparation and characterization of self-microemulsifying drug delivery system of olmesartan medoxomil for bioavailability improvement. J Pharm (Cairo). https://doi.org/10.1155/2013/728425

    Article  Google Scholar 

  113. Prasad D, Chauhan H, Atef E (2013) Studying the effect of lipid chain length on the precipitation of a poorly water soluble drug from self-emulsifying drug delivery system on dispersion into aqueous medium. J Pharm Pharmacol 65(8):1134–1144

    CAS  PubMed  Google Scholar 

  114. Qhattal HSS, Wang S, Salihima T, Srivastava SK, Liu X (2011) Nanoemulsions of cancer chemopreventive agent benzyl isothiocyanate display enhanced solubility, dissolution, and permeability. J Agric Food Chem 59(23):12396–12404

    CAS  PubMed  Google Scholar 

  115. Rajinikanth PS, Suyu Y, Garg S (2012) Development and in vitro characterization of self-nanoemulsifying drug delivery systems of valsartan. World Acad Sci Eng Technol 72:1418–1423

    Google Scholar 

  116. Rana H, Jesadiya B, Mandal S (2013) Development of microemulsion for solubility enhancement of atorvastatin calcium. Int J Pharm Sci Res 4(8):3103–3109

    Google Scholar 

  117. Rowe RC, Sheskey PJ, Cook WG, Fenton ME (2012) Diethylene glycol monoethyl ether. In: Pharmaceutical Press and the American Pharmacists Association (ed) Handbook of Pharmaceutical Excipients, 7th edn. Pharmaceutical Press, Washington, DC, pp 256–258

    Google Scholar 

  118. Saifee M, Zarekar S, Rao VU, Zaheer Z, Soni R, Burande S (2013) Formulation and in vitro evaluation of solid-self-emulsifying drug delivery system (SEDDS) of glibenclamide. Am J Adv Drug Deliv 1(3):323–340

    Google Scholar 

  119. Salimi A, Zadeh BSM, Moghimipour E (2013) Preparation and characterization of cyanocobalamin (Vit B12) microemulsion properties and structure for topical and transdermal application. Iran J Basic Med Sci 16(7):865–872

    PubMed  PubMed Central  Google Scholar 

  120. Salimi A, Hedayatipour N, Moghimipour E (2016) The effect of various vehicles on the naproxen permeability through rat skin: a mechanistic study by DSC and FT-IR techniques. Adv Pharm Bull 6(1):9–16

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Senapati PC, Sahoo SK, Sahu AN (2016) Mixed surfactant based (SNEDDS) self-nanoemulsifying drug delivery system presenting efavirenz for enhancement of oral bioavailability. Biomed Pharmacother 80:42–51

    CAS  PubMed  Google Scholar 

  122. Seo YG, Kim DH, Ramasamy T, Kim JH, Marasini N, Oh Y-K, Kim D-W, Kim JK, Yong CS, Kim JO (2013) Development of docetaxel-loaded solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced chemotherapeutic effect. Int J Pharm 452(1–2):412–420

    CAS  PubMed  Google Scholar 

  123. Seo YG, Kim DW, Yousaf AM, Park JH, Chang P-S, Baek HH, Lim S-J, Kim JO, Yong CS, Choi H-G (2015) Solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced oral bioavailability of poorly water-soluble tacrolimus: physicochemical characterisation and pharmacokinetics. J Microencapsul 32(5):503–510

    CAS  PubMed  Google Scholar 

  124. Shah BM, Misra M, Shishoo CJ, Padh H (2015) Nose to brain microemulsion-based drug delivery system of rivastigmine: formulation and ex vivo characterization. Drug Deliv 22(7):918–930

    CAS  PubMed  Google Scholar 

  125. Shahu SG, Wadetwar RN, Dixit GR (2013) Development of microemulsion for solubility enhancement of poorly water soluble drug valsartan. Int J Pharm Sci Rev Res 22:246–251

    Google Scholar 

  126. Shakeel F (2010) Criterion for excipients screening in the development of nanoemulsion formulation of three anti-inflammatory drugs. Pharm Dev Technol 15(2):131–138

    CAS  PubMed  Google Scholar 

  127. Shakeel F, Ramadan W (2010) Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. Colloids Surf B Biointerfaces 75(1):356–362

    CAS  PubMed  Google Scholar 

  128. Shakeel F, Baboota S, Ahuja A, Ali J, Aqil M, Shafiq S (2007) Nanoemulsions as vehicles for transdermal delivery of aceclofenac. AAPS PharmSciTech 8(4):191–199

    PubMed Central  Google Scholar 

  129. Shakeel F, Alanazi FK, Alsarra IA, Haq N (2013a) Solubilization behavior of paracetamol in transcutol–water mixtures at (298.15 to 333.15) K. J Chem Eng Data 58(12):3551–3556

    CAS  Google Scholar 

  130. Shakeel F, Haq N, El-Badry M, Alanazi FK, Alsarra IA (2013b) Ultra fine super self-nanoemulsifying drug delivery system (SNEDDS) enhanced solubility and dissolution of indomethacin. J Mol Liq 180:89–94

    CAS  Google Scholar 

  131. Shakeel F, Alanazi FK, Alsarra IA, Haq N (2014a) Solubility of antipsychotic drug risperidone in transcutol + water co-solvent mixtures at 298.15 to 333.15 K. J Mol Liq 191:68–72

    CAS  Google Scholar 

  132. Shakeel F, Bhat MA, Haq N (2014b) Solubility and dissolution thermodynamics of (2Z)-N-cyclohexyl-2-(3-hydroxybenzylidine) hydrazine carbothioamide in 2-(2-ethoxyethoxy)ethanol + water mixtures at (298.15 to 338.15) K. J Mol Liq 197:381–385

    CAS  Google Scholar 

  133. Shakeel F, Bhat MA, Haq N (2014c) Solubility of N-(4-chlorophenyl)-2-(pyridin-4-ylcarbonyl)hydrazinecarbothioamide (isoniazid analogue) in transcutol + water cosolvent mixtures at (298.15 to 338.15) K. J Chem Eng Data 59(5):1727–1732

    CAS  Google Scholar 

  134. Shakeel F, Haq N, Ahmed MA, Gambhir D, Alanazi FK, Alsarra IA (2014d) Removal of diclofenac sodium from aqueous solution using water/transcutol/ethylene glycol/Capryol-90 green nanoemulsions. J Mol Liq 199:102–107

    CAS  Google Scholar 

  135. Shakeel F, Haq N, Alanazi FK, Alsarra IA (2014e) Measurement and correlation of solubility of olmesartan medoxomil in six green solvents at 295.15–330.15 K. Ind Eng Chem Res 53(7):2846–2849

    CAS  Google Scholar 

  136. Shakeel F, Haq N, Alanazi FK, Alsarra IA (2014f) Measurement, correlation and thermodynamics of solubility of metronidazole in 2-(2-ethoxyethoxy) ethanol + water cosolvent mixtures at (298.15 to 333.15) K. J Mol Liq 200:398–403

    CAS  Google Scholar 

  137. Shakeel F, Haq N, Alanazi FK, Alsarra IA (2014g) Thermodynamic modeling for solubility prediction of indomethacin in self-nanoemulsifying drug delivery system (SNEDDS) and its individual components. Drug Dev Ind Pharm 40(9):1240–1245

    CAS  PubMed  Google Scholar 

  138. Shakeel F, Haq N, El-Badry M, Alanazi FK, Alsarra IA (2014h) Thermodynamics and solubility of tadalafil in diethylene glycol monoethyl ether + water co-solvent mixtures at (298.15 to 333.15) K. J Mol Liq 197:334–338

    CAS  Google Scholar 

  139. Shakeel F, Shazly GA, Haq N (2014i) Solubility of metoclopramide hydrochloride in six green solvents at (298.15 to 338.15) K. J Chem Eng Data 59(5):1700–1703

    CAS  Google Scholar 

  140. Shakeel F, Haq N, Alanazi FK, Alsarra IA (2015a) Solubility of anti-inflammatory drug lornoxicam in ten different green solvents at different temperatures. J Mol Liq 209:280–283

    CAS  Google Scholar 

  141. Shakeel F, Haq N, Iqbal M, Alanazi FK, Alsarra IA (2015b) Measurement, correlation, and thermodynamics of solubility of isatin in nine different green solvents at (298.15 to 338.15) K. J Chem Eng Data 60(3):801–805

    CAS  Google Scholar 

  142. Shakeel F, Haq N, Salem-Bekhit MM (2015c) Thermodynamics of solubility of isatin in Carbitol + water mixed solvent systems at different temperatures. J Mol Liq 207:274–278

    CAS  Google Scholar 

  143. Shakeel F, Haq N, Shazly GA, Alanazi FK, Alsarra IA (2015d) Solubility and thermodynamic analysis of tenoxicam in different pure solvents at different temperatures. J Chem Eng Data 60(8):2510–2514

    CAS  Google Scholar 

  144. Shakeel F, Haq N, Siddiqui NA, Alanazi FK, Alsarra IA (2015e) Correlation of solubility of bioactive compound reserpine in eight green solvents at (298.15 to 338.15) K. J Chem Eng Data 60(3):775–780

    CAS  Google Scholar 

  145. Shakeel F, Haq N, Siddiqui NA, Alanazi FK, Alsarra IA (2015f) Solubility and thermodynamics of vanillin in Carbitol-water mixtures at different temperatures. Food Sci Technol 64(2):1278–1282

    CAS  Google Scholar 

  146. Shakeel F, Haq N, Siddiqui NA, Alanazi FK, Alsarra IA (2015g) Thermodynamics of the solubility of reserpine in {2-(2-ethoxyethoxy)ethanol + water} mixed solvent systems at different temperatures. J Chem Thermodyn 85:57–60

    CAS  Google Scholar 

  147. Shakeel F, Salem-Bekhit MM, Iqbal M, Haq N (2015h) Solubility and thermodynamic function of a new anticancer drug ibrutinib in 2-(2-ethoxyethoxy)ethanol + water mixtures at different temperatures. J Chem Thermodyn 89:159–163

    CAS  Google Scholar 

  148. Shakeel F, Haq N, Raish M, Siddiqui NA, Alanazi FK, Alsarra IA (2016) Antioxidant and cytotoxic effects of vanillin via eucalyptus oil containing self-nanoemulsifying drug delivery system. J Mol Liq 218:233–239

    CAS  Google Scholar 

  149. Shakeel F, Alshehri S, Ibrahim MA, Elzayat EM, Altamimi MA, Mohsin K, Alanazi FK, Alsarra IA (2017a) Solubility and thermodynamic parameters of apigenin in different neat solvents at different temperatures. J Mol Liq 234:73–80

    CAS  Google Scholar 

  150. Shakeel F, Haq N, Alanazi FK, Alsarra IA (2017b) Solubility and thermodynamics of apremilast in different mono solvents: determination, correlation and molecular interactions. Int J Pharm 523(1):410–417

    CAS  PubMed  Google Scholar 

  151. Shakeel F, Imran M, Abida Haq N, Alanazi FK, Alsarra IA (2017c) Solubility and thermodynamic/solvation behavior of 6-phenyl-4,5-dihydropyridazin-3(2H)-one in different (transcutol + water) mixtures. J Mol Liq 230:511–517

    CAS  Google Scholar 

  152. Sharma S, Sahni JK, Ali J, Baboota S (2015) Effect of high-pressure homogenization on formulation of TPGS loaded nanoemulsion of rutin–pharmacodynamic and antioxidant studies. Drug Deliv 22(4):541–551

    CAS  PubMed  Google Scholar 

  153. Sharma K, Thakkar S, Khurana S, Bansal AK (2017) Excipients and their functionality for enabling technologies in oral dosage forms. In: Koo OM (ed) Pharmaceutical excipients, 1st edn. Wiley, New York, pp 97–144

    Google Scholar 

  154. Shazly G, Haq N, Shakeel F (2014a) Solution thermodynamics and solubilization behavior of diclofenac sodium in binary mixture of transcutol-HP and water. Pharmazie 69(5):335–339

    CAS  PubMed  Google Scholar 

  155. Shazly GA, Haq N, Shakeel F (2014b) Solution thermodynamics and solubility prediction of glibenclamide in transcutol + water co-solvent mixtures at 298.15–333.15 K. Arch Pharm Res 37(6):746–751

    CAS  PubMed  Google Scholar 

  156. Shen L-N, Zhang Y-T, Wang Q, Xu L, Feng N-P (2014) Preparation and evaluation of microemulsion-based transdermal delivery of total flavone of rhizoma arisaematis. Int J Nanomed 9:3453–3464

    Google Scholar 

  157. Singh D, Tiwary AK, Bedi N (2019) Canagliflozin loaded SMEDDS: formulation optimization for improved solubility, permeability and pharmacokinetic performance. J Pharm Investig 49(1):67–85

    CAS  Google Scholar 

  158. Sinha B, Müller RH, Möschwitzer JP (2013) Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int J Pharm 453(1):126–141

    CAS  PubMed  Google Scholar 

  159. Soottitantawat A, Yoshii H, Furuta T, Ohkawara M, Linko P (2003) Microencapsulation by spray drying: influence of emulsion size on the retention of volatile compounds. J Food Sci 68(7):2256–2262

    CAS  Google Scholar 

  160. Sriamornsak P, Limmatvapirat S, Piriyaprasarth S, Mansukmanee P, Huang Z (2015) A new self-emulsifying formulation of mefenamic acid with enhanced drug dissolution. Asian J Pharm Sci 10(2):121–127

    Google Scholar 

  161. Stovall DM, Acree WE, Abraham MH (2005) Solubility of 9-fluorenone, thianthrene and xanthene in organic solvents. Fluid Phase Equilib 232(1):113–121

    CAS  Google Scholar 

  162. Subramanian N, Sharavanan SP, Chandrasekar P, Balakumar A, Moulik SP (2016) Lacidipine self-nanoemulsifying drug delivery system for the enhancement of oral bioavailability. Arch Pharm Res 39(4):481–491

    CAS  PubMed  Google Scholar 

  163. Sullivan DW, Gad SC, Julien M (2014) A review of the nonclinical safety of transcutol®, a highly purified form of diethylene glycol monoethyl ether (DEGEE) used as a pharmaceutical excipient. Food Chem Toxicol 72:40–50

    CAS  PubMed  Google Scholar 

  164. Sun M, Si L, Zhai X, Fan Z, Ma Y, Zhang R, Yang X (2011) The influence of co-solvents on the stability and bioavailability of rapamycin formulated in self-microemulsifying drug delivery systems. Drug Dev Ind Pharm 37(8):986–994

    CAS  PubMed  Google Scholar 

  165. Swain S, Patra CN, Rao ME (2016) Self-emulsifying drug delivery systems. In: Swain S, Patra CN, Rao ME (eds) Pharmaceutical drug delivery systems and vehicles, 1st edn. WPI Publishing, New Delhi, pp 1–82

    Google Scholar 

  166. Tan A, Rao S, Prestidge CA (2013) Transforming lipid-based oral drug delivery systems into solid dosage forms: an overview of solid carriers, physicochemical properties, and biopharmaceutical performance. Pharm Res 30(12):2993–3017

    CAS  PubMed  Google Scholar 

  167. Thakkar PJ, Madan P, Lin S (2014) Transdermal delivery of diclofenac using water-in-oil microemulsion: formulation and mechanistic approach of drug skin permeation. Pharm Dev Technol 19(3):373–384

    CAS  PubMed  Google Scholar 

  168. Thorat AA, Dalvi SV (2012) Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: recent developments and future perspective. Chem Eng J 181–182:1–34

    Google Scholar 

  169. Tian Q-P, Li P, Xie K-C (2009) Investigation of microemulsion system for transdermal drug delivery of Amphotericin B. Chem Res Chin Univ 25:86–94

    CAS  Google Scholar 

  170. Tilleul P, Mons B, Schmitt C, Laporte J-M, Begue D (2003) Intravenous drug preparation practices: a survey in a French university hospital. Pharm World Sci 25(6):276–279

    PubMed  Google Scholar 

  171. Tiossi RFJ, Da Costa JC, Miranda MA, Praça FSG, McChesney JD, Bentley MVLB, Bastos JK (2014) In vitro and in vivo evaluation of the delivery of topical formulations containing glycoalkaloids of Solanum lycocarpum fruits. Eur J Pharm Biopharm 88(1):28–33

    CAS  PubMed  Google Scholar 

  172. Torrado S, Torrado S, Cadorniga R, Torrado JJ (1996) Formulation parameters of albendazole solution. Int J Pharm 140(1):45–50

    CAS  Google Scholar 

  173. Torrado S, López ML, Torrado G, Bolás F, Torrado S, Cadórniga R (1997) A novel formulation of albendazole solution: oral bioavailability and efficacy evaluation. Int J Pharm 156(2):181–187

    CAS  Google Scholar 

  174. Tran TH, Guo Y, Song D, Bruno RS, Lu X (2014) Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability. J Pharm Sci 103(3):840–852

    CAS  PubMed  Google Scholar 

  175. Tung N-T, Tran C-S, Nguyen H-A, Nguyen T-L, Chi S-C, Nguyen D-D (2018) Development of solidified self-microemulsifying drug delivery systems containing l-tetrahydropalmatine: design of experiment approach and bioavailability comparison. Int J Pharm 537(1–2):9–21

    CAS  PubMed  Google Scholar 

  176. Valicherla GR, Dave KM, Syed AA, Riyazuddin M, Gupta AP, Singh A, Mitra K, Datta D, Gayen JR (2016) Formulation optimization of Docetaxel loaded self-emulsifying drug delivery system to enhance bioavailability and anti-tumor activity. Sci Rep 6:26895–26905

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Venkatesh M, Mallesh K (2013) Self-nano emulsifying drug delivery system (SNEDDS) for oral delivery of atorvastatin-formulation and bioavailability studies. J Drug Deliv Ther 3(3):131–140

    Google Scholar 

  178. Wang Y, Sun J, Zhang T, Liu H, He F, He Z (2011) Enhanced oral bioavailability of tacrolimus in rats by self-microemulsifying drug delivery systems. Drug Dev Ind Pharm 37(10):1225–1230

    CAS  PubMed  Google Scholar 

  179. Wang B, Pu Y, Xu B, Tao J, Wang Y, Zhang T, Wu P (2015a) Self-microemulsifying drug delivery system improved oral bioavailability of 20 (S)-protopanaxadiol: from preparation to evaluation. Chem Pharm Bull 63(9):688–693

    CAS  PubMed  Google Scholar 

  180. Wang Z, Mu H-J, Zhang X-M, Ma P-K, Lian S-N, Zhang F-P, Chu S-Y, Zhang W-W, Wang A-P, Wang W-Y (2015b) Lower irritation microemulsion-based rotigotine gel: formulation optimization and in vitro and in vivo studies. Int J Nanomed 10:633–644

    Google Scholar 

  181. Wei L, Sun P, Nie S, Pan W (2005) Preparation and evaluation of SEDDS and SMEDDS containing carvedilol. Drug Dev Ind Pharm 31(8):785–794

    CAS  PubMed  Google Scholar 

  182. Wei Y, Ye X, Shang X, Peng X, Bao Q, Liu M, Guo M, Li F (2012) Enhanced oral bioavailability of silybin by a supersaturatable self-emulsifying drug delivery system (S-SEDDS). Colloids Surf Physicochem Eng Asp 396:22–28

    CAS  Google Scholar 

  183. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter CJH (2013a) Strategies to Address Low Drug Solubility in Discovery and Development. Pharmacol Rev 65(1):315–499

    PubMed  Google Scholar 

  184. Williams HD, Sassene P, Kleberg K, Calderone M, Igonin A, Jule E, Vertommen J, Blundell R, Benameur H, Müllertz A (2013b) Toward the establishment of standardized in vitro tests for lipid-based formulations, part 3: understanding supersaturation versus precipitation potential during the in vitro digestion of type I, II, IIIA, IIIB and IV lipid-based formulations. Pharm Res 30(12):3059–3076

    CAS  PubMed  Google Scholar 

  185. Woo JS, Kim T-S, Park J-H, Chi S-C (2007) Formulation and biopharmaceutical evaluation of silymarin using SMEDDS. Arch Pharm Res 30(1):82–89

    CAS  PubMed  Google Scholar 

  186. Xia D, Gan Y, Cui F (2014) Application of precipitation methods for the production of water-insoluble drug nanocrystals: production techniques and stability of nanocrystals. Curr Pharm Des 20(3):408–435

    CAS  PubMed  Google Scholar 

  187. Yalkowsky SH, Roseman TJ (1981) Solubilization of drugs by cosolvents. In: Yalkowsky SH (ed) Techniques of soluhilization of drugs, 1st edn. Dekker, New York, p 91

    Google Scholar 

  188. Yan Y-D, Kim JA, Kwak MK, Yoo BK, Yong CS, Choi H-G (2011) Enhanced oral bioavailability of curcumin via a solid lipid-based self-emulsifying drug delivery system using a spray-drying technique. Biol Pharm Bull 34(8):1179–1186

    CAS  PubMed  Google Scholar 

  189. Yang J-H, Y-l Kim, Kim K-M (2002) Preparation and evaluation of aceclofenac microemulsion for transdermal delivery system. Arch Pharm Res 25(4):534–540

    CAS  PubMed  Google Scholar 

  190. Yeh M-K, Chang L-C, Chiou AH-J (2009) Improving tenoxicam solubility and bioavailability by cosolvent system. AAPS PharmSciTech 10(1):166–171

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Yeom DW, Song YS, Kim SR, Lee SG, Kang MH, Lee S, Choi YW (2015) Development and optimization of a self-microemulsifying drug delivery system for atorvastatin calcium by using D-optimal mixture design. Int J Nanomed 10:3865–3877

    CAS  Google Scholar 

  192. Yeom DW, Chae BR, Son HY, Kim JH, Chae JS, Song SH, Oh D, Choi YW (2017) Enhanced oral bioavailability of valsartan using a polymer-based supersaturable self-microemulsifying drug delivery system. Int J Nanomedicine 12:3533–3545

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Yin Y-M, Cui F-D, Mu C-F, Choi M-K, Kim JS, Chung S-J, Shim C-K, Kim D-D (2009a) Docetaxel microemulsion for enhanced oral bioavailability: preparation and in vitro and in vivo evaluation. J Control Release 140(2):86–94

    CAS  PubMed  Google Scholar 

  194. Yin Y, Cui F, Mu C, Chung S, Shim C, Kim D (2009b) Improved solubility of docetaxel using a microemulsion delivery system: formulation optimization and evaluation. Asian J Pharm Sci 4(6):331–339

    Google Scholar 

  195. Yoo JH, Shanmugam S, Thapa P, Lee E-S, Balakrishnan P, Baskaran R, Yoon S-K, Choi H-G, Yong CS, Yoo BK (2010) Novel self-nanoemulsifying drug delivery system for enhanced solubility and dissolution of lutein. Arch Pharm Res 33(3):417–426

    CAS  PubMed  Google Scholar 

  196. Yoshida A, Yamamoto M, Irie T, Hirayama F, Uekama K (1989) Some pharmaceutical properties of 3-hydroxypropyl- and 2, 3-dihydroxypropyl-beta-cyclodextrins and their solubilizing and stabilizing abilities. Chem Pharm Bull (Tokyo) 37(4):1059–1063

    CAS  Google Scholar 

  197. Yuan Y, S-m Li, F-k Mo, D-f Zhong (2006) Investigation of microemulsion system for transdermal delivery of meloxicam. Int J Pharm 321(1–2):117–123

    CAS  PubMed  Google Scholar 

  198. Zhang Q, Jiang X, Jiang W, Lu W, Su L, Shi Z (2004) Preparation of nimodipine-loaded microemulsion for intranasal delivery and evaluation on the targeting efficiency to the brain. Int J Pharm 275(1–2):85–96

    CAS  PubMed  Google Scholar 

  199. Zhang P, Liu Y, Feng N, Xu J (2008) Preparation and evaluation of self-microemulsifying drug delivery system of oridonin. Int J Pharm 355(1–2):269–276

    CAS  PubMed  Google Scholar 

  200. Zhang L, Zhu W, Yang C, Guo H, Yu A, Ji J, Gao Y, Sun M, Zhai G (2012) A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting. Int J Nanomed 7:151–162

    CAS  Google Scholar 

  201. Zhang Y, He L, Yue S, Huang Q, Zhang Y, Yang J (2017) Characterization and evaluation of a self-microemulsifying drug delivery system containing tectorigenin, an isoflavone with low aqueous solubility and poor permeability. Drug Deliv 24(1):632–640

    PubMed  Google Scholar 

  202. Zhao Y, Wang C, Chow AH, Ren K, Gong T, Zhang Z, Zheng Y (2010) Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of Zedoary essential oil: formulation and bioavailability studies. Int J Pharm 383(1–2):170–177

    CAS  PubMed  Google Scholar 

  203. Zhao L, Wang Y, Zhai Y, Wang Z, Liu J, Zhai G (2014) Ropivacaine loaded microemulsion and microemulsion-based gel for transdermal delivery: preparation, optimization, and evaluation. Int J Pharm 477(1–2):47–56

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2017R1C1B1006483).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Min-Soo Kim.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Statement of human and animal rights

This article does not contain any studies with human and animal subjects performed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ha, E., Lee, S., Choi, D.H. et al. Application of diethylene glycol monoethyl ether in solubilization of poorly water-soluble drugs. J. Pharm. Investig. 50, 231–250 (2020). https://doi.org/10.1007/s40005-019-00454-y

Download citation

Keywords

  • Diethylene glycol monoethyl ether
  • Solubilizer
  • Solubility
  • Cosolvent
  • Transcutol