Skip to main content

Advertisement

Log in

Application of diethylene glycol monoethyl ether in solubilization of poorly water-soluble drugs

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

Diethylene glycol monoethyl ether (DEGEE) is produced via the O-alkylation of ethanol with two ethylene oxide units, followed by distillation. It has a long history of safe use in food and personal-care products, and is used as an effective strong solubilizer in oral, topical, transdermal, and injectable human and veterinary pharmaceutical products. It has been used as a pharmaceutical solvent for many years under the trade name transcutol. DEGEE, a hydroalcoholic solvent, is gaining interest as a penetration/permeation enhancer, solubilizer, and surfactant for drug delivery systems.

Area covered

The physicochemical properties of DEGEE, the solubility data for drugs in DEGEE or DEGEE-water mixtures, and the applications of DEGEE in the solubilization of poorly water-soluble drugs are summarized in this review.

Expert opinion

DEGEE is a promising excipient as a solubilizer for many pharmaceutical products with enhanced drug absorption via oral, parenteral, and topical administration, as well as cosmetic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdou EM, Kandil SM, El Miniawy HMF (2017) Brain targeting efficiency of antimigrain drug loaded mucoadhesive intranasal nanoemulsion. Int J Pharm 529(1–2):667–677

    CAS  PubMed  Google Scholar 

  • Agrawal AG, Kumar A, Gide PS (2014) Formulation development and in vivo hepatoprotective activity of self nanoemulsifying drug delivery system of antioxidant coenzyme Q 10. Arch Pharm Res. https://doi.org/10.1007/s12272-014-0497-z

    Article  PubMed  Google Scholar 

  • Agrawal AG, Kumar A, Gide PS (2015) Self emulsifying drug delivery system for enhanced solubility and dissolution of glipizide. Colloids Surf B Biointerfaces 126:553–560

    CAS  PubMed  Google Scholar 

  • Akhter MH, Ahmad A, Ali J, Mohan G (2014) Formulation and development of CoQ10-loaded s-SNEDDS for enhancement of oral bioavailability. J Pharm Innov 9(2):121–131

    Google Scholar 

  • Al Abood RM, Talegaonkar S, Tariq M, Ahmad FJ (2013) Microemulsion as a tool for the transdermal delivery of ondansetron for the treatment of chemotherapy induced nausea and vomiting. Colloids Surf B Biointerfaces 101:143–151

    CAS  PubMed  Google Scholar 

  • Alshehri S, Shakeel F (2017) Solubility measurement, thermodynamics and molecular interactions of flufenamic acid in different neat solvents. J Mol Liq 240:447–453

    CAS  Google Scholar 

  • Arora R, Aggarwal G, Harikumar S (2014) Kaur K (2014) Nanoemulsion based hydrogel for enhanced transdermal delivery of ketoprofen. Adv Pharm. https://doi.org/10.1155/2014/468456

    Article  Google Scholar 

  • Azeem A, Khan ZI, Aqil M, Ahmad FJ, Khar RK, Talegaonkar S (2009) Microemulsions as a surrogate carrier for dermal drug delivery. Drug Dev Ind Pharm 35(5):525–547

    CAS  PubMed  Google Scholar 

  • Bachhav YG, Patravale VB (2009) SMEDDS of glyburide: formulation, in vitro evaluation, and stability studies. AAPS PharmSciTech 10(2):482–487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baek MK, Lee JH, Cho YH, Kim HH, Lee GW (2013) Self-microemulsifying drug-delivery system for improved oral bioavailability of pranlukast hemihydrate: preparation and evaluation. Int J Nanomed 8:167–176

    Google Scholar 

  • Balakrishnan P, Lee B-J, Oh DH, Kim JO, Lee Y-I, Kim D-D, Jee J-P, Lee Y-B, Woo JS, Yong CS (2009) Enhanced oral bioavailability of Coenzyme Q10 by self-emulsifying drug delivery systems. Int J Pharm 374(1–2):66–72

    CAS  PubMed  Google Scholar 

  • Barot BS, Parejiya PB, Patel HK, Gohel MC, Shelat PK (2012) Microemulsion-based gel of terbinafine for the treatment of onychomycosis: optimization of formulation using D-optimal design. AAPS PharmSciTech 13(1):184–192

    CAS  PubMed  Google Scholar 

  • Barzegar-Jalali M, Rahimpour E, Martinez F, Jouyban A (2018) Generally trained models to predict drug solubility in methanol + water mixtures. J Mol Liq 264:631–644

    CAS  Google Scholar 

  • Basalious EB, Shawky N, Badr-Eldin SM (2010) SNEDDS containing bioenhancers for improvement of dissolution and oral absorption of lacidipine. I: development and optimization. Int J Pharm 391(1–2):203–211

    CAS  PubMed  Google Scholar 

  • Beg S, Sharma G, Rahman M, Swain S (2016) Lipid-based nanostructured drug delivery systems for oral bioavailability enhancement of poorly water-soluble drugs. In: Swain S, Patra CN, Rao ME (eds) Pharmaceutical drug delivery systems and vehicles, 1st edn. WPI Publishing, New Delhi, pp 83–114

    Google Scholar 

  • Bergström CAS, Norinder U, Luthman K, Artursson P (2002) Experimental and computational screening models for prediction of aqueous drug solubility. Pharm Res 19(2):182–188

    PubMed  Google Scholar 

  • Bhatia G, Zhou Y, Banga AK (2013) Adapalene microemulsion for transfollicular drug delivery. J Pharm Sci 102(8):2622–2631

    CAS  PubMed  Google Scholar 

  • Chadha G, Sathigari S, Parsons DL, Babu RJ (2011) In vitro percutaneous absorption of genistein from topical gels through human skin. Drug Dev Ind Pharm 37(5):498–505

    CAS  PubMed  Google Scholar 

  • Chavda H, Patel J, Chavada G, Dave S, Patel A, Patel C (2013) Self-nanoemulsifying powder of isotretinoin: preparation and characterization. J Powder Technol 2013:9

    Google Scholar 

  • Chen Y, Li G, Wu X, Chen Z, Hang J, Qin B, Chen S, Wang R (2008) Self-microemulsifying drug delivery system (SMEDDS) of vinpocetine: formulation development and in vivo assessment. Biol Pharm Bull 31(1):118–125

    CAS  PubMed  Google Scholar 

  • Chen C-H, Chang C-C, Shih T-H, Aljuffali IA, Yeh T-S, Fang J-Y (2015) Self-nanoemulsifying drug delivery systems ameliorate the oral delivery of silymarin in rats with Roux-en-Y gastric bypass surgery. Int J Nanomed 10:2403–2416

    CAS  Google Scholar 

  • Cho Y-J, Choi H-K (1998) Enhancement of percutaneous absorption of ketoprofen: effect of vehicles and adhesive matrix. Int J Pharm 169(1):95–104

    CAS  Google Scholar 

  • Cho Y-D, Park Y-J (2014) In vitro and in vivo evaluation of a self-microemulsifying drug delivery system for the poorly soluble drug fenofibrate. Arch Pharm Res 37(2):193–203

    CAS  PubMed  Google Scholar 

  • Cho HJ, Lee DW, Marasini N, Poudel BK, Kim JH, Ramasamy T, Yoo BK, Choi HG, Yong CS, Kim JO (2013) Optimization of self-microemulsifying drug delivery system for telmisartan using Box-Behnken design and desirability function. J Pharm Pharmacol 65(10):1440–1450

    CAS  PubMed  Google Scholar 

  • Choi YK, Poudel BK, Marasini N, Yang KY, Kim JW, Kim JO, Choi H-G, Yong CS (2012) Enhanced solubility and oral bioavailability of itraconazole by combining membrane emulsification and spray drying technique. Int J Pharm 434(1–2):264–271

    CAS  PubMed  Google Scholar 

  • Choo G-H, Park S-J, Hwang S-J, Kim M-S (2013) Formulation and in vivo evaluation of a self-microemulsifying drug delivery system of dutasteride. Drug Res 63(04):203–209

    Google Scholar 

  • Dhawan B, Aggarwal G, Harikumar S (2014) Enhanced transdermal permeability of piroxicam through novel nanoemulgel formulation. Int J Pharm Investig 4(2):65–76

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Badry M, Haq N, Fetih G, Shakeel F (2014) Measurement and correlation of tadalafil solubility in five pure solvents at (298.15 to 333.15) K. J Chem Eng Data 59(3):839–843

    CAS  Google Scholar 

  • Elshafeey AH, Bendas ER, Mohamed OH (2009) Intranasal microemulsion of sildenafil citrate: in vitro evaluation and in vivo pharmacokinetic study in rabbits. AAPS PharmSciTech 10(2):361–367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elshafeey AH, Hamza YE, Amin SY, Akhlaghi F, Zia H (2011) Enhanced bioavailability of fenoterol transdermal systems in rabbits. J Bioequiv Availab 3(5):97–100

    CAS  Google Scholar 

  • Fouad SA, Basalious EB, El-Nabarawi MA, Tayel SA (2013) Microemulsion and poloxamer microemulsion-based gel for sustained transdermal delivery of diclofenac epolamine using in-skin drug depot: in vitro/in vivo evaluation. Int J Pharm 453(2):569–578

    CAS  PubMed  Google Scholar 

  • Franceschinis E, Bortoletto C, Perissutti B, Dal Zotto M, Voinovich D, Realdon N (2011) Self-emulsifying pellets in a lab-scale high shear mixer: formulation and production design. Powder Technol 207(1–3):113–118

    CAS  Google Scholar 

  • Froelich A, Osmałek T, Snela A, Kunstman P, Jadach B, Olejniczak M, Roszak G, Białas W (2017) Novel microemulsion-based gels for topical delivery of indomethacin: formulation, physicochemical properties and in vitro drug release studies. J Colloid Interface Sci 507:323–336

    CAS  PubMed  Google Scholar 

  • Gandra SC, Nguyen S, Nazzal S, Alayoubi A, Jung R, Nesamony J (2015) Thermoresponsive fluconazole gels for topical delivery: rheological and mechanical properties, in vitro drug release and anti-fungal efficacy. Pharm Dev Technol 20(1):41–49

    CAS  PubMed  Google Scholar 

  • Ganem-Quintanar A, Lafforgue C, Falson-Rieg F, Buri P (1997) Evaluation of the transepidermal permeation of diethylene glycol monoethyl ether and skin water loss. Int J Pharm 147(2):165–171

    CAS  Google Scholar 

  • Gao Z-G, Choi H-G, Shin H-J, Park K-M, Lim S-J, Hwang K-J, Kim C-K (1998) Physicochemical characterization and evaluation of a microemulsion system for oral delivery of cyclosporin A. Int J Pharm 161(1):75–86

    CAS  Google Scholar 

  • Ge S, Lin Y, Lu H, Li Q, He J, Chen B, Wu C, Xu Y (2014) Percutaneous delivery of econazole using microemulsion as vehicle: formulation, evaluation and vesicle-skin interaction. Int J Pharm 465(1–2):120–131

    CAS  PubMed  Google Scholar 

  • Gwak HS, Chun IK (2002) Effect of vehicles and penetration enhancers on the in vitro percutaneous absorption of tenoxicam through hairless mouse skin. Int J Pharm 236(1–2):57–64

    CAS  PubMed  Google Scholar 

  • Ha E-S, Lee Y-R, Kim M-S (2016) Solubility of dronedarone hydrochloride in six pure solvents at the range of 298.15 to 323.15K. J Mol Liq 216:360–363

    CAS  Google Scholar 

  • Ha E-S, Kuk D-H, Ha D-H, Sim W-Y, I-h Baek, Kim J-S, Kim M-S (2017a) Determination and correlation of solubility of sarpogrelate hydrochloride in eight solvents at different temperatures. J Mol Liq 237:141–145

    CAS  Google Scholar 

  • Ha E-S, Kim J-S, Kuk D-H, Ha D-H, I-h Baek, Kim M-S (2017b) Determination and correlation of solubility of pranlukast hemihydrate in five organic solvents at different temperatures and its dissolution properties. J Mol Liq 225:231–234

    CAS  Google Scholar 

  • Ha E-S, Kuk D-H, Kim J-S, Kim M-S (2019) Solubility of trans-resveratrol in transcutol HP + water mixtures at different temperatures and its application to fabrication of nanosuspensions. J Mol Liq 281:344–351

    CAS  Google Scholar 

  • Hajjar B, Zier K-I, Khalid N, Azarmi S, Löbenberg R (2018) Evaluation of a microemulsion-based gel formulation for topical drug delivery of diclofenac sodium. J Pharm Investig 48(3):351–362

    CAS  Google Scholar 

  • Hansen CM (2007) Hansen solubility parameters: a user’s handbook. CRC Press, New York

    Google Scholar 

  • Haq A, Michniak-Kohn B (2018) Effects of solvents and penetration enhancers on transdermal delivery of thymoquinone: permeability and skin deposition study. Drug Deliv 25(1):1943–1949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong J-Y, Kim J-K, Song Y-K, Park J-S, Kim C-K (2006) A new self-emulsifying formulation of itraconazole with improved dissolution and oral absorption. J Control Release 110(2):332–338

    CAS  PubMed  Google Scholar 

  • Hu L, Wu H, Niu F, Yan C, Yang X, Jia Y (2011a) Design of fenofibrate microemulsion for improved bioavailability. Int J Pharm 420(2):251–255

    CAS  PubMed  Google Scholar 

  • Hu L, Yang J, Liu W, Li L (2011b) Preparation and evaluation of ibuprofen-loaded microemulsion for improvement of oral bioavailability. Drug Deliv 18(1):90–95

    CAS  PubMed  Google Scholar 

  • Hu L, Jia Y, Niu F, Jia Z, Yang X, Jiao K (2012) Preparation and enhancement of oral bioavailability of curcumin using microemulsions vehicle. J Agric Food Chem 60(29):7137–7141

    CAS  PubMed  Google Scholar 

  • Hu L, Hu Q, Yang J (2014) Enhancement of transdermal delivery of ibuprofen using microemulsion vehicle. Iran J Basic Med Sci 17(10):760–766

    PubMed  PubMed Central  Google Scholar 

  • Hua L, Weisan P, Jiayu L, Hongfei L (2004a) Preparation and evaluation of microemulsion of vinpocetine for transdermal delivery. Pharmazie 59(4):274–278

    CAS  PubMed  Google Scholar 

  • Hua L, Weisan P, Jiayu L, Ying Z (2004b) Preparation, evaluation, and NMR characterization of vinpocetine microemulsion for transdermal delivery. Drug Dev Ind Pharm 30(6):657–666

    CAS  PubMed  Google Scholar 

  • Hussain A, Samad A, Singh S, Ahsan M, Haque M, Faruk A, Ahmed F (2016) Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation. Drug Deliv 23(2):642–657

    CAS  PubMed  Google Scholar 

  • Ilem-Ozdemir D, Gundogdu E, Ekinci M, Ozgenc E, Asikoglu M (2015) Comparative permeability studies with radioactive and nonradioactive risedronate sodium from self-microemulsifying drug delivery system and solution. Drug Dev Ind Pharm 41(9):1493–1498

    CAS  PubMed  Google Scholar 

  • Jain R, Patravale VB (2009) Development and evaluation of nitrendipine nanoemulsion for intranasal delivery. J Biomed Nanotechnol 5(1):62–68

    CAS  PubMed  Google Scholar 

  • Jakki R, Syed MA, Kandadi P, Veerabrahma K (2013) Development of a self-microemulsifying drug delivery system of domperidone: in vitro and in vivo characterization. Acta Pharm 63(2):241–251

    CAS  PubMed  Google Scholar 

  • Jannin V, Chevrier S, Michenaud M, Dumont C, Belotti S, Chavant Y, Demarne F (2015) Development of self emulsifying lipid formulations of BCS class II drugs with low to medium lipophilicity. Int J Pharm 495(1):385–392

    CAS  PubMed  Google Scholar 

  • Javadzadeh Y, Hamishehkar H (2011) Enhancing percutaneous delivery of methotrexate using different types of surfactants. Colloids Surf B Biointerfaces 82(2):422–426

    CAS  PubMed  Google Scholar 

  • Jouyban A (2008) Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures. J Pharm Pharm Sci 11(1):32–58

    CAS  PubMed  Google Scholar 

  • Jouyban A (2010) Handbook of solubility data for pharmaceuticals. CRC Press, New York

    Google Scholar 

  • Jouyban A, Acree WE (2018) Mathematical derivation of the Jouyban-Acree model to represent solute solubility data in mixed solvents at various temperatures. J Mol Liq 256:541–547

    CAS  Google Scholar 

  • Kalam MA, Khan AA, Alshamsan A, Haque A, Shakeel F (2018) Solubility of a poorly soluble immunosuppressant in different pure solvents: measurement, correlation, thermodynamics and molecular interactions. J Mol Liq 249:53–60

    Google Scholar 

  • Kamble RN, Mehta PP, Kumar A (2016) Efavirenz self-nano-emulsifying drug delivery system: in vitro and in vivo evaluation. AAPS PharmSciTech 17(5):1240–1247

    CAS  PubMed  Google Scholar 

  • Kamboj S, Rana V (2016) Quality-by-design based development of a self-microemulsifying drug delivery system to reduce the effect of food on Nelfinavir mesylate. Int J Pharm 501(1–2):311–325

    CAS  PubMed  Google Scholar 

  • Kang JH, Oh DH, Oh Y-K, Yong CS, Choi H-G (2012) Effects of solid carriers on the crystalline properties, dissolution and bioavailability of flurbiprofen in solid self-nanoemulsifying drug delivery system (solid SNEDDS). Eur J Pharm Biopharm 80(2):289–297

    CAS  PubMed  Google Scholar 

  • Kassem AM, Ibrahim HM, Samy AM (2017) Development and optimisation of atorvastatin calcium loaded self-nanoemulsifying drug delivery system (SNEDDS) for enhancing oral bioavailability: in vitro and in vivo evaluation. J Microencapsul 34(3):319–333

    CAS  PubMed  Google Scholar 

  • Khoubnasabjafari M, Shayanfar A, Martinez F, Acree WE, Jouyban A (2016) Generally trained models to predict solubility of drugs in carbitol + water mixtures at various temperatures. J Mol Liq 219:435–438

    CAS  Google Scholar 

  • Kikwai L, Kanikkannan N, Babu R, Singh M (2002) Effect of vehicles on the transdermal delivery of melatonin across porcine skin in vitro. J Control Release 83(2):307–311

    CAS  PubMed  Google Scholar 

  • Kim C-K, Hwang Y-Y, Chang JY, Choi H-G, Lim S-J, Lee M-K (2001) Development of a novel dosage form for intramuscular injection of titrated extract of Centella asiatica in a mixed micellar system. Int J Pharm 220(1):141–147

    CAS  PubMed  Google Scholar 

  • Kim M-S, Ha E-S, Choo G-H, Baek I-H (2015) Preparation and in vivo evaluation of a dutasteride-loaded solid-supersaturatable self-microemulsifying drug delivery system. Int J Mol Sci 16(5):10821–10833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Ramasamy T, Choi JY, Kim ST, Youn YS, Choi H-G, Yong CS, Kim JO (2017) PEGylated polypeptide lipid nanocapsules to enhance the anticancer efficacy of erlotinib in non-small cell lung cancer. Colloids Surf B Biointerfaces 150:393–401

    CAS  PubMed  Google Scholar 

  • Kim J-S, Kim M-S, Baek I-H (2018a) Enhanced bioavailability of tadalafil after intranasal administration in beagle dogs. Pharmaceutics 10(4):187–195

    CAS  PubMed Central  Google Scholar 

  • Kim M-S, Ha E-S, Kuk D-H, Ha D-H, Sim W-Y (2018b) Method for manufacturing nanosuspension comprising insoluble drug using bottom-up method and nanosuspension made thereby. KR 10-2018-0096085

  • Kumar A, Sharma P, Chaturvedi A, Jaiswal D, Bajpai M, Choudhary M, Yadav IK, Singh HP, Chandra D, Jain D (2009a) Formulation development of sertraline hydrochloride microemulsion for intranasal delivery. Int J Chemtech Res 1(4):941–947

    CAS  Google Scholar 

  • Kumar D, Aqil M, Rizwan M, Sultana Y, Ali M (2009b) Investigation of a nanoemulsion as vehicle for transdermal delivery of amlodipine. Pharmazie 64(2):80–85

    CAS  PubMed  Google Scholar 

  • Lee E-A, Balakrishnan P, Song C-K, Choi J-H, Noh G-Y, Park C-G, Choi A-J, Chung S-J, Shim C-K, Kim D-D (2010) Microemulsion-based hydrogel formulation of itraconazole for topical delivery. J Pharm Investig 40(5):305–311

    CAS  Google Scholar 

  • Lee DH, Yeom DW, Song YS, Cho HR, Choi YS, Kang MJ, Choi YW (2015) Improved oral absorption of dutasteride via Soluplus®-based supersaturable self-emulsifying drug delivery system (S-SEDDS). Int J Pharm 478(1):341–347

    CAS  PubMed  Google Scholar 

  • Li W, Yi S, Wang Z, Chen S, Xin S, Xie J, Zhao C (2011) Self-nanoemulsifying drug delivery system of persimmon leaf extract: optimization and bioavailability studies. Int J Pharm 420(1):161–171

    CAS  PubMed  Google Scholar 

  • Li L, Yi T, Lam CW-K (2013) Effects of spray-drying and choice of solid carriers on concentrations of Labrasol® and transcutol® in solid self-microemulsifying drug delivery systems (SMEDDS). Molecules 18(1):545–560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Pan T, Cui Y, Li X, Gao J, Yang W, Shen S (2016) Improved oral bioavailability of poorly water-soluble glimepiride by utilizing microemulsion technique. Int J Nanomed 11:3777–3788

    CAS  Google Scholar 

  • Liu Y, Chen ZQ, Zhang X, Feng NP, Zhao JH, Wu S, Tan R (2010) An improved formulation screening and optimization method applied to the development of a self-microemulsifying drug delivery system. Chem Pharm Bull 58(1):16–22

    CAS  Google Scholar 

  • Liu W, Tian R, Hu W, Jia Y, Jiang H, Zhang J, Zhang L (2012) Preparation and evaluation of self-microemulsifying drug delivery system of baicalein. Fitoterapia 83(8):1532–1539

    CAS  PubMed  Google Scholar 

  • Liu X, Feng X, Williams RO, Zhang F (2018) Characterization of amorphous solid dispersions. J Pharm Investig 48(1):19–41

    Google Scholar 

  • Ma H, Zhao Q, Wang Y, Guo T, An Y, Shi G (2012) Design and evaluation of self-emulsifying drug delivery systems of Rhizoma corydalis decumbentis extracts. Drug Dev Ind Pharm 38(10):1200–1206

    CAS  PubMed  Google Scholar 

  • Mahmoud H, Al-Suwayeh S, Elkadi S (2013) Design and optimization of self-nanoemulsifying drug delivery systems of simvastatin aiming dissolution enhancement. Afr J Pharm Pharmacol 7(22):1482–1500

    Google Scholar 

  • Mahmoud DB, Shukr MH, Bendas ER (2014) In vitro and in vivo evaluation of self-nanoemulsifying drug delivery systems of cilostazol for oral and parenteral administration. Int J Pharm 476(1–2):60–69

    CAS  PubMed  Google Scholar 

  • Mandal S (2011) Microemulsion drug delivery system: design and development for oral bioavailability enhancement of lovastatin. S Afr Pharm J 78(3):44–50

    Google Scholar 

  • Mandal S, Mandal SS (2011) Research paper microemulsion drug delivery system: a platform for improving dissolution rate of poorly water soluble drug. Int J Pharm Sci Nanotech 3(4):1214–1219

    CAS  Google Scholar 

  • Mandal S, Mandal SD, Surti N, Patel VB (2010) Development of microemulsion formulation for the solubility enhancement of flunarizine. Pharm Lett 2(3):227–236

    CAS  Google Scholar 

  • Mantri SK, Pashikanti S, Murthy KR (2012) Development and characterization of self-nanoemulsifying drug delivery systems (SNEDDS) of atorvastatin calcium. Curr Drug Deliv 9(2):182–196

    CAS  PubMed  Google Scholar 

  • Marasini N, Yan YD, Poudel BK, Choi HG, Yong CS, Kim JO (2012) Development and optimization of self-nanoemulsifying drug delivery system with enhanced bioavailability by Box-Behnken design and desirability function. J Pharm Sci 101(12):4584–4596

    CAS  PubMed  Google Scholar 

  • Millard JW, Alvarez-Núñez FA, Yalkowsky SH (2002) Solubilization by cosolvents: establishing useful constants for the log–linear model. Int J Pharm 245(1):153–166

    CAS  PubMed  Google Scholar 

  • Miyako Y, Khalef N, Matsuzaki K, Pinal R (2010) Solubility enhancement of hydrophobic compounds by cosolvents: role of solute hydrophobicity on the solubilization effect. Int J Pharm 393(1):48–54

    CAS  PubMed  Google Scholar 

  • Moghimipour E, Salimi A, Leis F (2012) Preparation and evaluation of tretinoin microemulsion based on pseudo-ternary phase diagram. Adv Pharm Bull 2(2):141–147

    PubMed  PubMed Central  Google Scholar 

  • Moghimipour E, Salimi A, Eftekhari S (2013a) Design and characterization of microemulsion systems for naproxen. Adv Pharm Bull 3(1):63–71

    PubMed  PubMed Central  Google Scholar 

  • Moghimipour E, Salimi A, Karami M, Isazadeh S (2013b) Preparation and characterization of dexamethasone microemulsion based on pseudoternary phase diagram. Jundishapur J Nat Pharm Prod 8(3):105–112

    PubMed  PubMed Central  Google Scholar 

  • Müllertz A, Ogbonna A, Ren S, Rades T (2010) New perspectives on lipid and surfactant based drug delivery systems for oral delivery of poorly soluble drugs. J Pharm Pharmacol 62(11):1622–1636

    PubMed  Google Scholar 

  • Mura P, Bragagni M, Mennini N, Cirri M, Maestrelli F (2014) Development of liposomal and microemulsion formulations for transdermal delivery of clonazepam: effect of randomly methylated β-cyclodextrin. Int J Pharm 475(1–2):306–314

    CAS  PubMed  Google Scholar 

  • Narayana L, Chella N, Kumar D, Shastri NR (2015) Design of a novel type IV lipid-based delivery system for improved delivery of drugs with low partition coefficient. J Liposome Res 25(4):325–333

    CAS  PubMed  Google Scholar 

  • Nasr A, Gardouh A, Ghonaim H, Abdelghany E, Ghorab M (2016) Effect of oils, surfactants and cosurfactants on phase behavior and physicochemical properties of self-nanoemulsifying drug delivery system (SNEDDS) for irbesartan and olmesartan. Int J App Pharm 8:13–24

    CAS  Google Scholar 

  • Nekkanti V, Karatgi P, Prabhu R, Pillai R (2010) Solid self-microemulsifying formulation for candesartan cilexetil. AAPS PharmSciTech 11(1):9–17

    CAS  PubMed  Google Scholar 

  • Nesamony J, Kalra A, Majrad MS, Boddu SHS, Jung R, Williams FE, Schnapp AM, Nauli SM, Kalinoski AL (2013) Development and characterization of nanostructured mists with potential for actively targeting poorly water-soluble compounds into the lungs. Pharm Res 30(10):2625–2639

    CAS  PubMed  Google Scholar 

  • Nesamony J, Shah IS, Kalra A, Jung R (2014) Nebulized oil-in-water nanoemulsion mists for pulmonary delivery: development, physico-chemical characterization and in vitro evaluation. Drug Dev Ind Pharm 40(9):1253–1263

    CAS  PubMed  Google Scholar 

  • Oh DH, Kang JH, Kim DW, Lee B-J, Kim JO, Yong CS, Choi H-G (2011) Comparison of solid self-microemulsifying drug delivery system (solid SMEDDS) prepared with hydrophilic and hydrophobic solid carrier. Int J Pharm 420(2):412–418

    CAS  PubMed  Google Scholar 

  • Osborne DW (2011) Diethylene glycol monoethyl ether: an emerging solvent in topical dermatology products. J Cosmet Dermatol 10(4):324–329

    PubMed  Google Scholar 

  • Osborne DW, Musakhanian J (2018) Skin penetration and permeation properties of transcutol®—neat or diluted mixtures. AAPS PharmSciTech 19(8):3512–3533

    CAS  PubMed  Google Scholar 

  • Panapisal V, Charoensri S, Tantituvanont A (2012) Formulation of microemulsion systems for dermal delivery of silymarin. AAPS PharmSciTech 13(2):389–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parmar N, Singla N, Amin S, Kohli K (2011) Study of cosurfactant effect on nanoemulsifying area and development of lercanidipine loaded (SNEDDS) self nanoemulsifying drug delivery system. Colloids Surf B Biointerfaces 86(2):327–338

    CAS  PubMed  Google Scholar 

  • Patel RB, Patel MR, Bhatt KK, Patel BG (2013) Formulation consideration and characterization of microemulsion drug delivery system for transnasal administration of carbamazepine. Bull Fac Pharm Cairo Univ 51(2):243–253

    Google Scholar 

  • Patharkar P, Tarkase K (2017) Development and evaluation of solid self emulsifying drug delivery system of olmesartan medoxomil by using adsorption to solid carrier techniques. Int J Drug Res Tech 6(3):209–227

    Google Scholar 

  • Pawar SK, Vavia PR (2012) Rice germ oil as multifunctional excipient in preparation of self-microemulsifying drug delivery system (SMEDDS) of tacrolimus. AAPS PharmSciTech 13(1):254–261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prajapati ST, Joshi HA, Patel CN (2012) Preparation and characterization of self-microemulsifying drug delivery system of olmesartan medoxomil for bioavailability improvement. J Pharm (Cairo). https://doi.org/10.1155/2013/728425

    Article  Google Scholar 

  • Prasad D, Chauhan H, Atef E (2013) Studying the effect of lipid chain length on the precipitation of a poorly water soluble drug from self-emulsifying drug delivery system on dispersion into aqueous medium. J Pharm Pharmacol 65(8):1134–1144

    CAS  PubMed  Google Scholar 

  • Qhattal HSS, Wang S, Salihima T, Srivastava SK, Liu X (2011) Nanoemulsions of cancer chemopreventive agent benzyl isothiocyanate display enhanced solubility, dissolution, and permeability. J Agric Food Chem 59(23):12396–12404

    CAS  PubMed  Google Scholar 

  • Rajinikanth PS, Suyu Y, Garg S (2012) Development and in vitro characterization of self-nanoemulsifying drug delivery systems of valsartan. World Acad Sci Eng Technol 72:1418–1423

    Google Scholar 

  • Rana H, Jesadiya B, Mandal S (2013) Development of microemulsion for solubility enhancement of atorvastatin calcium. Int J Pharm Sci Res 4(8):3103–3109

    Google Scholar 

  • Rowe RC, Sheskey PJ, Cook WG, Fenton ME (2012) Diethylene glycol monoethyl ether. In: Pharmaceutical Press and the American Pharmacists Association (ed) Handbook of Pharmaceutical Excipients, 7th edn. Pharmaceutical Press, Washington, DC, pp 256–258

    Google Scholar 

  • Saifee M, Zarekar S, Rao VU, Zaheer Z, Soni R, Burande S (2013) Formulation and in vitro evaluation of solid-self-emulsifying drug delivery system (SEDDS) of glibenclamide. Am J Adv Drug Deliv 1(3):323–340

    Google Scholar 

  • Salimi A, Zadeh BSM, Moghimipour E (2013) Preparation and characterization of cyanocobalamin (Vit B12) microemulsion properties and structure for topical and transdermal application. Iran J Basic Med Sci 16(7):865–872

    PubMed  PubMed Central  Google Scholar 

  • Salimi A, Hedayatipour N, Moghimipour E (2016) The effect of various vehicles on the naproxen permeability through rat skin: a mechanistic study by DSC and FT-IR techniques. Adv Pharm Bull 6(1):9–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Senapati PC, Sahoo SK, Sahu AN (2016) Mixed surfactant based (SNEDDS) self-nanoemulsifying drug delivery system presenting efavirenz for enhancement of oral bioavailability. Biomed Pharmacother 80:42–51

    CAS  PubMed  Google Scholar 

  • Seo YG, Kim DH, Ramasamy T, Kim JH, Marasini N, Oh Y-K, Kim D-W, Kim JK, Yong CS, Kim JO (2013) Development of docetaxel-loaded solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced chemotherapeutic effect. Int J Pharm 452(1–2):412–420

    CAS  PubMed  Google Scholar 

  • Seo YG, Kim DW, Yousaf AM, Park JH, Chang P-S, Baek HH, Lim S-J, Kim JO, Yong CS, Choi H-G (2015) Solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced oral bioavailability of poorly water-soluble tacrolimus: physicochemical characterisation and pharmacokinetics. J Microencapsul 32(5):503–510

    CAS  PubMed  Google Scholar 

  • Shah BM, Misra M, Shishoo CJ, Padh H (2015) Nose to brain microemulsion-based drug delivery system of rivastigmine: formulation and ex vivo characterization. Drug Deliv 22(7):918–930

    CAS  PubMed  Google Scholar 

  • Shahu SG, Wadetwar RN, Dixit GR (2013) Development of microemulsion for solubility enhancement of poorly water soluble drug valsartan. Int J Pharm Sci Rev Res 22:246–251

    Google Scholar 

  • Shakeel F (2010) Criterion for excipients screening in the development of nanoemulsion formulation of three anti-inflammatory drugs. Pharm Dev Technol 15(2):131–138

    CAS  PubMed  Google Scholar 

  • Shakeel F, Ramadan W (2010) Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. Colloids Surf B Biointerfaces 75(1):356–362

    CAS  PubMed  Google Scholar 

  • Shakeel F, Baboota S, Ahuja A, Ali J, Aqil M, Shafiq S (2007) Nanoemulsions as vehicles for transdermal delivery of aceclofenac. AAPS PharmSciTech 8(4):191–199

    PubMed Central  Google Scholar 

  • Shakeel F, Alanazi FK, Alsarra IA, Haq N (2013a) Solubilization behavior of paracetamol in transcutol–water mixtures at (298.15 to 333.15) K. J Chem Eng Data 58(12):3551–3556

    CAS  Google Scholar 

  • Shakeel F, Haq N, El-Badry M, Alanazi FK, Alsarra IA (2013b) Ultra fine super self-nanoemulsifying drug delivery system (SNEDDS) enhanced solubility and dissolution of indomethacin. J Mol Liq 180:89–94

    CAS  Google Scholar 

  • Shakeel F, Alanazi FK, Alsarra IA, Haq N (2014a) Solubility of antipsychotic drug risperidone in transcutol + water co-solvent mixtures at 298.15 to 333.15 K. J Mol Liq 191:68–72

    CAS  Google Scholar 

  • Shakeel F, Bhat MA, Haq N (2014b) Solubility and dissolution thermodynamics of (2Z)-N-cyclohexyl-2-(3-hydroxybenzylidine) hydrazine carbothioamide in 2-(2-ethoxyethoxy)ethanol + water mixtures at (298.15 to 338.15) K. J Mol Liq 197:381–385

    CAS  Google Scholar 

  • Shakeel F, Bhat MA, Haq N (2014c) Solubility of N-(4-chlorophenyl)-2-(pyridin-4-ylcarbonyl)hydrazinecarbothioamide (isoniazid analogue) in transcutol + water cosolvent mixtures at (298.15 to 338.15) K. J Chem Eng Data 59(5):1727–1732

    CAS  Google Scholar 

  • Shakeel F, Haq N, Ahmed MA, Gambhir D, Alanazi FK, Alsarra IA (2014d) Removal of diclofenac sodium from aqueous solution using water/transcutol/ethylene glycol/Capryol-90 green nanoemulsions. J Mol Liq 199:102–107

    CAS  Google Scholar 

  • Shakeel F, Haq N, Alanazi FK, Alsarra IA (2014e) Measurement and correlation of solubility of olmesartan medoxomil in six green solvents at 295.15–330.15 K. Ind Eng Chem Res 53(7):2846–2849

    CAS  Google Scholar 

  • Shakeel F, Haq N, Alanazi FK, Alsarra IA (2014f) Measurement, correlation and thermodynamics of solubility of metronidazole in 2-(2-ethoxyethoxy) ethanol + water cosolvent mixtures at (298.15 to 333.15) K. J Mol Liq 200:398–403

    CAS  Google Scholar 

  • Shakeel F, Haq N, Alanazi FK, Alsarra IA (2014g) Thermodynamic modeling for solubility prediction of indomethacin in self-nanoemulsifying drug delivery system (SNEDDS) and its individual components. Drug Dev Ind Pharm 40(9):1240–1245

    CAS  PubMed  Google Scholar 

  • Shakeel F, Haq N, El-Badry M, Alanazi FK, Alsarra IA (2014h) Thermodynamics and solubility of tadalafil in diethylene glycol monoethyl ether + water co-solvent mixtures at (298.15 to 333.15) K. J Mol Liq 197:334–338

    CAS  Google Scholar 

  • Shakeel F, Shazly GA, Haq N (2014i) Solubility of metoclopramide hydrochloride in six green solvents at (298.15 to 338.15) K. J Chem Eng Data 59(5):1700–1703

    CAS  Google Scholar 

  • Shakeel F, Haq N, Alanazi FK, Alsarra IA (2015a) Solubility of anti-inflammatory drug lornoxicam in ten different green solvents at different temperatures. J Mol Liq 209:280–283

    CAS  Google Scholar 

  • Shakeel F, Haq N, Iqbal M, Alanazi FK, Alsarra IA (2015b) Measurement, correlation, and thermodynamics of solubility of isatin in nine different green solvents at (298.15 to 338.15) K. J Chem Eng Data 60(3):801–805

    CAS  Google Scholar 

  • Shakeel F, Haq N, Salem-Bekhit MM (2015c) Thermodynamics of solubility of isatin in Carbitol + water mixed solvent systems at different temperatures. J Mol Liq 207:274–278

    CAS  Google Scholar 

  • Shakeel F, Haq N, Shazly GA, Alanazi FK, Alsarra IA (2015d) Solubility and thermodynamic analysis of tenoxicam in different pure solvents at different temperatures. J Chem Eng Data 60(8):2510–2514

    CAS  Google Scholar 

  • Shakeel F, Haq N, Siddiqui NA, Alanazi FK, Alsarra IA (2015e) Correlation of solubility of bioactive compound reserpine in eight green solvents at (298.15 to 338.15) K. J Chem Eng Data 60(3):775–780

    CAS  Google Scholar 

  • Shakeel F, Haq N, Siddiqui NA, Alanazi FK, Alsarra IA (2015f) Solubility and thermodynamics of vanillin in Carbitol-water mixtures at different temperatures. Food Sci Technol 64(2):1278–1282

    CAS  Google Scholar 

  • Shakeel F, Haq N, Siddiqui NA, Alanazi FK, Alsarra IA (2015g) Thermodynamics of the solubility of reserpine in {2-(2-ethoxyethoxy)ethanol + water} mixed solvent systems at different temperatures. J Chem Thermodyn 85:57–60

    CAS  Google Scholar 

  • Shakeel F, Salem-Bekhit MM, Iqbal M, Haq N (2015h) Solubility and thermodynamic function of a new anticancer drug ibrutinib in 2-(2-ethoxyethoxy)ethanol + water mixtures at different temperatures. J Chem Thermodyn 89:159–163

    CAS  Google Scholar 

  • Shakeel F, Haq N, Raish M, Siddiqui NA, Alanazi FK, Alsarra IA (2016) Antioxidant and cytotoxic effects of vanillin via eucalyptus oil containing self-nanoemulsifying drug delivery system. J Mol Liq 218:233–239

    CAS  Google Scholar 

  • Shakeel F, Alshehri S, Ibrahim MA, Elzayat EM, Altamimi MA, Mohsin K, Alanazi FK, Alsarra IA (2017a) Solubility and thermodynamic parameters of apigenin in different neat solvents at different temperatures. J Mol Liq 234:73–80

    CAS  Google Scholar 

  • Shakeel F, Haq N, Alanazi FK, Alsarra IA (2017b) Solubility and thermodynamics of apremilast in different mono solvents: determination, correlation and molecular interactions. Int J Pharm 523(1):410–417

    CAS  PubMed  Google Scholar 

  • Shakeel F, Imran M, Abida Haq N, Alanazi FK, Alsarra IA (2017c) Solubility and thermodynamic/solvation behavior of 6-phenyl-4,5-dihydropyridazin-3(2H)-one in different (transcutol + water) mixtures. J Mol Liq 230:511–517

    CAS  Google Scholar 

  • Sharma S, Sahni JK, Ali J, Baboota S (2015) Effect of high-pressure homogenization on formulation of TPGS loaded nanoemulsion of rutin–pharmacodynamic and antioxidant studies. Drug Deliv 22(4):541–551

    CAS  PubMed  Google Scholar 

  • Sharma K, Thakkar S, Khurana S, Bansal AK (2017) Excipients and their functionality for enabling technologies in oral dosage forms. In: Koo OM (ed) Pharmaceutical excipients, 1st edn. Wiley, New York, pp 97–144

    Google Scholar 

  • Shazly G, Haq N, Shakeel F (2014a) Solution thermodynamics and solubilization behavior of diclofenac sodium in binary mixture of transcutol-HP and water. Pharmazie 69(5):335–339

    CAS  PubMed  Google Scholar 

  • Shazly GA, Haq N, Shakeel F (2014b) Solution thermodynamics and solubility prediction of glibenclamide in transcutol + water co-solvent mixtures at 298.15–333.15 K. Arch Pharm Res 37(6):746–751

    CAS  PubMed  Google Scholar 

  • Shen L-N, Zhang Y-T, Wang Q, Xu L, Feng N-P (2014) Preparation and evaluation of microemulsion-based transdermal delivery of total flavone of rhizoma arisaematis. Int J Nanomed 9:3453–3464

    Google Scholar 

  • Singh D, Tiwary AK, Bedi N (2019) Canagliflozin loaded SMEDDS: formulation optimization for improved solubility, permeability and pharmacokinetic performance. J Pharm Investig 49(1):67–85

    CAS  Google Scholar 

  • Sinha B, Müller RH, Möschwitzer JP (2013) Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int J Pharm 453(1):126–141

    CAS  PubMed  Google Scholar 

  • Soottitantawat A, Yoshii H, Furuta T, Ohkawara M, Linko P (2003) Microencapsulation by spray drying: influence of emulsion size on the retention of volatile compounds. J Food Sci 68(7):2256–2262

    CAS  Google Scholar 

  • Sriamornsak P, Limmatvapirat S, Piriyaprasarth S, Mansukmanee P, Huang Z (2015) A new self-emulsifying formulation of mefenamic acid with enhanced drug dissolution. Asian J Pharm Sci 10(2):121–127

    Google Scholar 

  • Stovall DM, Acree WE, Abraham MH (2005) Solubility of 9-fluorenone, thianthrene and xanthene in organic solvents. Fluid Phase Equilib 232(1):113–121

    CAS  Google Scholar 

  • Subramanian N, Sharavanan SP, Chandrasekar P, Balakumar A, Moulik SP (2016) Lacidipine self-nanoemulsifying drug delivery system for the enhancement of oral bioavailability. Arch Pharm Res 39(4):481–491

    CAS  PubMed  Google Scholar 

  • Sullivan DW, Gad SC, Julien M (2014) A review of the nonclinical safety of transcutol®, a highly purified form of diethylene glycol monoethyl ether (DEGEE) used as a pharmaceutical excipient. Food Chem Toxicol 72:40–50

    CAS  PubMed  Google Scholar 

  • Sun M, Si L, Zhai X, Fan Z, Ma Y, Zhang R, Yang X (2011) The influence of co-solvents on the stability and bioavailability of rapamycin formulated in self-microemulsifying drug delivery systems. Drug Dev Ind Pharm 37(8):986–994

    CAS  PubMed  Google Scholar 

  • Swain S, Patra CN, Rao ME (2016) Self-emulsifying drug delivery systems. In: Swain S, Patra CN, Rao ME (eds) Pharmaceutical drug delivery systems and vehicles, 1st edn. WPI Publishing, New Delhi, pp 1–82

    Google Scholar 

  • Tan A, Rao S, Prestidge CA (2013) Transforming lipid-based oral drug delivery systems into solid dosage forms: an overview of solid carriers, physicochemical properties, and biopharmaceutical performance. Pharm Res 30(12):2993–3017

    CAS  PubMed  Google Scholar 

  • Thakkar PJ, Madan P, Lin S (2014) Transdermal delivery of diclofenac using water-in-oil microemulsion: formulation and mechanistic approach of drug skin permeation. Pharm Dev Technol 19(3):373–384

    CAS  PubMed  Google Scholar 

  • Thorat AA, Dalvi SV (2012) Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: recent developments and future perspective. Chem Eng J 181–182:1–34

    Google Scholar 

  • Tian Q-P, Li P, Xie K-C (2009) Investigation of microemulsion system for transdermal drug delivery of Amphotericin B. Chem Res Chin Univ 25:86–94

    CAS  Google Scholar 

  • Tilleul P, Mons B, Schmitt C, Laporte J-M, Begue D (2003) Intravenous drug preparation practices: a survey in a French university hospital. Pharm World Sci 25(6):276–279

    PubMed  Google Scholar 

  • Tiossi RFJ, Da Costa JC, Miranda MA, Praça FSG, McChesney JD, Bentley MVLB, Bastos JK (2014) In vitro and in vivo evaluation of the delivery of topical formulations containing glycoalkaloids of Solanum lycocarpum fruits. Eur J Pharm Biopharm 88(1):28–33

    CAS  PubMed  Google Scholar 

  • Torrado S, Torrado S, Cadorniga R, Torrado JJ (1996) Formulation parameters of albendazole solution. Int J Pharm 140(1):45–50

    CAS  Google Scholar 

  • Torrado S, López ML, Torrado G, Bolás F, Torrado S, Cadórniga R (1997) A novel formulation of albendazole solution: oral bioavailability and efficacy evaluation. Int J Pharm 156(2):181–187

    CAS  Google Scholar 

  • Tran TH, Guo Y, Song D, Bruno RS, Lu X (2014) Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability. J Pharm Sci 103(3):840–852

    CAS  PubMed  Google Scholar 

  • Tung N-T, Tran C-S, Nguyen H-A, Nguyen T-L, Chi S-C, Nguyen D-D (2018) Development of solidified self-microemulsifying drug delivery systems containing l-tetrahydropalmatine: design of experiment approach and bioavailability comparison. Int J Pharm 537(1–2):9–21

    CAS  PubMed  Google Scholar 

  • Valicherla GR, Dave KM, Syed AA, Riyazuddin M, Gupta AP, Singh A, Mitra K, Datta D, Gayen JR (2016) Formulation optimization of Docetaxel loaded self-emulsifying drug delivery system to enhance bioavailability and anti-tumor activity. Sci Rep 6:26895–26905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatesh M, Mallesh K (2013) Self-nano emulsifying drug delivery system (SNEDDS) for oral delivery of atorvastatin-formulation and bioavailability studies. J Drug Deliv Ther 3(3):131–140

    Google Scholar 

  • Wang Y, Sun J, Zhang T, Liu H, He F, He Z (2011) Enhanced oral bioavailability of tacrolimus in rats by self-microemulsifying drug delivery systems. Drug Dev Ind Pharm 37(10):1225–1230

    CAS  PubMed  Google Scholar 

  • Wang B, Pu Y, Xu B, Tao J, Wang Y, Zhang T, Wu P (2015a) Self-microemulsifying drug delivery system improved oral bioavailability of 20 (S)-protopanaxadiol: from preparation to evaluation. Chem Pharm Bull 63(9):688–693

    CAS  Google Scholar 

  • Wang Z, Mu H-J, Zhang X-M, Ma P-K, Lian S-N, Zhang F-P, Chu S-Y, Zhang W-W, Wang A-P, Wang W-Y (2015b) Lower irritation microemulsion-based rotigotine gel: formulation optimization and in vitro and in vivo studies. Int J Nanomed 10:633–644

    Google Scholar 

  • Wei L, Sun P, Nie S, Pan W (2005) Preparation and evaluation of SEDDS and SMEDDS containing carvedilol. Drug Dev Ind Pharm 31(8):785–794

    CAS  PubMed  Google Scholar 

  • Wei Y, Ye X, Shang X, Peng X, Bao Q, Liu M, Guo M, Li F (2012) Enhanced oral bioavailability of silybin by a supersaturatable self-emulsifying drug delivery system (S-SEDDS). Colloids Surf Physicochem Eng Asp 396:22–28

    CAS  Google Scholar 

  • Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter CJH (2013a) Strategies to Address Low Drug Solubility in Discovery and Development. Pharmacol Rev 65(1):315–499

    PubMed  Google Scholar 

  • Williams HD, Sassene P, Kleberg K, Calderone M, Igonin A, Jule E, Vertommen J, Blundell R, Benameur H, Müllertz A (2013b) Toward the establishment of standardized in vitro tests for lipid-based formulations, part 3: understanding supersaturation versus precipitation potential during the in vitro digestion of type I, II, IIIA, IIIB and IV lipid-based formulations. Pharm Res 30(12):3059–3076

    CAS  PubMed  Google Scholar 

  • Woo JS, Kim T-S, Park J-H, Chi S-C (2007) Formulation and biopharmaceutical evaluation of silymarin using SMEDDS. Arch Pharm Res 30(1):82–89

    CAS  PubMed  Google Scholar 

  • Xia D, Gan Y, Cui F (2014) Application of precipitation methods for the production of water-insoluble drug nanocrystals: production techniques and stability of nanocrystals. Curr Pharm Des 20(3):408–435

    CAS  PubMed  Google Scholar 

  • Yalkowsky SH, Roseman TJ (1981) Solubilization of drugs by cosolvents. In: Yalkowsky SH (ed) Techniques of soluhilization of drugs, 1st edn. Dekker, New York, p 91

    Google Scholar 

  • Yan Y-D, Kim JA, Kwak MK, Yoo BK, Yong CS, Choi H-G (2011) Enhanced oral bioavailability of curcumin via a solid lipid-based self-emulsifying drug delivery system using a spray-drying technique. Biol Pharm Bull 34(8):1179–1186

    CAS  PubMed  Google Scholar 

  • Yang J-H, Y-l Kim, Kim K-M (2002) Preparation and evaluation of aceclofenac microemulsion for transdermal delivery system. Arch Pharm Res 25(4):534–540

    CAS  PubMed  Google Scholar 

  • Yeh M-K, Chang L-C, Chiou AH-J (2009) Improving tenoxicam solubility and bioavailability by cosolvent system. AAPS PharmSciTech 10(1):166–171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeom DW, Song YS, Kim SR, Lee SG, Kang MH, Lee S, Choi YW (2015) Development and optimization of a self-microemulsifying drug delivery system for atorvastatin calcium by using D-optimal mixture design. Int J Nanomed 10:3865–3877

    CAS  Google Scholar 

  • Yeom DW, Chae BR, Son HY, Kim JH, Chae JS, Song SH, Oh D, Choi YW (2017) Enhanced oral bioavailability of valsartan using a polymer-based supersaturable self-microemulsifying drug delivery system. Int J Nanomedicine 12:3533–3545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Y-M, Cui F-D, Mu C-F, Choi M-K, Kim JS, Chung S-J, Shim C-K, Kim D-D (2009a) Docetaxel microemulsion for enhanced oral bioavailability: preparation and in vitro and in vivo evaluation. J Control Release 140(2):86–94

    CAS  PubMed  Google Scholar 

  • Yin Y, Cui F, Mu C, Chung S, Shim C, Kim D (2009b) Improved solubility of docetaxel using a microemulsion delivery system: formulation optimization and evaluation. Asian J Pharm Sci 4(6):331–339

    Google Scholar 

  • Yoo JH, Shanmugam S, Thapa P, Lee E-S, Balakrishnan P, Baskaran R, Yoon S-K, Choi H-G, Yong CS, Yoo BK (2010) Novel self-nanoemulsifying drug delivery system for enhanced solubility and dissolution of lutein. Arch Pharm Res 33(3):417–426

    CAS  PubMed  Google Scholar 

  • Yoshida A, Yamamoto M, Irie T, Hirayama F, Uekama K (1989) Some pharmaceutical properties of 3-hydroxypropyl- and 2, 3-dihydroxypropyl-beta-cyclodextrins and their solubilizing and stabilizing abilities. Chem Pharm Bull (Tokyo) 37(4):1059–1063

    CAS  Google Scholar 

  • Yuan Y, S-m Li, F-k Mo, D-f Zhong (2006) Investigation of microemulsion system for transdermal delivery of meloxicam. Int J Pharm 321(1–2):117–123

    CAS  PubMed  Google Scholar 

  • Zhang Q, Jiang X, Jiang W, Lu W, Su L, Shi Z (2004) Preparation of nimodipine-loaded microemulsion for intranasal delivery and evaluation on the targeting efficiency to the brain. Int J Pharm 275(1–2):85–96

    CAS  PubMed  Google Scholar 

  • Zhang P, Liu Y, Feng N, Xu J (2008) Preparation and evaluation of self-microemulsifying drug delivery system of oridonin. Int J Pharm 355(1–2):269–276

    CAS  PubMed  Google Scholar 

  • Zhang L, Zhu W, Yang C, Guo H, Yu A, Ji J, Gao Y, Sun M, Zhai G (2012) A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting. Int J Nanomed 7:151–162

    CAS  Google Scholar 

  • Zhang Y, He L, Yue S, Huang Q, Zhang Y, Yang J (2017) Characterization and evaluation of a self-microemulsifying drug delivery system containing tectorigenin, an isoflavone with low aqueous solubility and poor permeability. Drug Deliv 24(1):632–640

    PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Wang C, Chow AH, Ren K, Gong T, Zhang Z, Zheng Y (2010) Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of Zedoary essential oil: formulation and bioavailability studies. Int J Pharm 383(1–2):170–177

    CAS  PubMed  Google Scholar 

  • Zhao L, Wang Y, Zhai Y, Wang Z, Liu J, Zhai G (2014) Ropivacaine loaded microemulsion and microemulsion-based gel for transdermal delivery: preparation, optimization, and evaluation. Int J Pharm 477(1–2):47–56

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2017R1C1B1006483).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Soo Kim.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Statement of human and animal rights

This article does not contain any studies with human and animal subjects performed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, ES., Lee, SK., Choi, D.H. et al. Application of diethylene glycol monoethyl ether in solubilization of poorly water-soluble drugs. J. Pharm. Investig. 50, 231–250 (2020). https://doi.org/10.1007/s40005-019-00454-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-019-00454-y

Keywords

Navigation