Skip to main content
Log in

Von Tyrosinkinase- und BCL2-Hemmern bis zur CAR-T-Zell-Behandlung

Neue Therapiemöglichkeiten für Patienten mit CLL

  • Hämatologie
  • Fortbildung
  • Published:
Im Fokus Onkologie Aims and scope

Die Therapie der chronischen lymphatischen Leukämie (CLL) befindet sich im Wandel. Durch zunehmendes Verständnis der pathophysiologischen Grundlagen können neue Substanzen, darunter immuntherapeutische Ansätze und selektive Inhibitoren, entwickelt werden. Im März 2018 wurde die neue S3-Leitlinie der Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF) zur Therapie der CLL veröffentlicht, in der der Einsatz dieser neuen Substanzen in bestimmten Indikationen vorgesehen ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Hallek M et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–56

    Article  CAS  Google Scholar 

  2. Rai KR et al. Clinical staging of chronic lymphocytic leukemia. Blood. 1975;46(2):219–34

    CAS  PubMed  Google Scholar 

  3. Binet JL et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer. 1981;48(1):198–206

    Article  CAS  Google Scholar 

  4. The International CLL-IPI working group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLLIPI): a meta-analysis of individual patient data. Lancet Oncol. 2016;17(6):779–90

    Article  Google Scholar 

  5. Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. Diagnostik, Therapie und Nachsorge für Patienten mit einer chronisch lymphatischen Leukämie. 2018 [29.08.2018]; https://www.awmf.org/leitlinien/detail/ll/018-032OL.html

  6. Hallek M et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010;376(9747):1164–74

    Article  CAS  Google Scholar 

  7. Boross P, Leusen JH. Mechanisms of action of CD20 antibodies. Am J Cancer Res. 2012;2(6):676–90

    CAS  PubMed  PubMed Central  Google Scholar 

  8. European Medicines Agency. MabThera. [28.08.2018]; http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/000165/human_med_000897.jsp&mid=WC-0b01ac058001d124

  9. Eichhorst B et al. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016;17(7):928–42

    Article  CAS  Google Scholar 

  10. Hillmen P et al. Rituximab plus chlorambucil as first-line treatment for chronic lymphocytic leukemia: Final analysis of an open-label phase II study. J Clin Oncol. 2014;32(12):1236–41

    Article  CAS  Google Scholar 

  11. Furman RR et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370(11):997–1007

    Article  CAS  Google Scholar 

  12. Kasi PM et al. Clinical review: Serious adverse events associated with the use of rituximab — a critical care perspective. Crit Care. 2012;16(4):231

    Article  Google Scholar 

  13. Goede V et al. Obinutuzumab as frontline treatment of chronic lymphocytic leukemia: updated results of the CLL11 study. Leukemia. 2015;29(7):1602–4

    Article  CAS  Google Scholar 

  14. European Medicines Agency. Gazyvaro. [29.08.2018]; http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002799/human_med_001780.jsp&mid=WC-0b01ac058001d124

  15. Niiro H, Clark EA. Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol. 2002;2(12):945–56

    Article  CAS  Google Scholar 

  16. Burger JA, Chiorazzi N. B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol. 2013;34(12):592–601

    Article  CAS  Google Scholar 

  17. Herman SE et al. Phosphatidylinositol 3-kinase-d inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood. 2010;116(12):2078–88

    Article  CAS  Google Scholar 

  18. Honigberg LA et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A. 2010;107(29):13075–80

    Article  CAS  Google Scholar 

  19. O’Brien S et al. Single-agent ibrutinib in treatment-naive and relapsed/refractory chronic lymphocytic leukemia: a 5-year experience. Blood. 2018;131(17): 1910–9

    Article  Google Scholar 

  20. European Medicines Agency. Imbruvica. [03.09.2018]; http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/003791/human_med_001801.jsp&mid=WC0b01ac058001d124

  21. Scheers E et al. Absorption, metabolism, and excretion of oral (1)(4)C radiolabeled ibrutinib: an open-label, phase I, single-dose study in healthy men. Drug Metab Dispos. 2015;43(2):289–97

    Article  Google Scholar 

  22. de Jong J et al. Effect of CYP3A perpetrators on ibrutinib exposure in healthy participants. Pharmacol Res Perspect. 2015;3(4):e00156

    Article  Google Scholar 

  23. Woyach JA et al. Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molecular characteristics and does not indicate a suboptimal response to therapy. Blood. 2014;123(12):1810–7

    Article  CAS  Google Scholar 

  24. Shatzel JJ et al. Ibrutinib-associated bleeding: pathogenesis, management and risk reduction strategies. J Thromb Haemost. 2017;15(5):835–47

    Article  CAS  Google Scholar 

  25. Byrd JC et al. Acalabrutinib (ACP-196) in Relapsed Chronic Lymphocytic Leukemia. N Engl J Med. 2016;374(4):323–32

    Article  CAS  Google Scholar 

  26. European Medicines Agency. EU/3/16/1624. [29.08.2018]; http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/orphans/2016/05/human_orphan_001728.jsp&mid=WC0b01ac058001d12b

  27. Lannutti BJ et al. CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood. 2011;117(2):591–4

    Article  CAS  Google Scholar 

  28. European Medicines Agency. Zydelig. [03.09.2018]; http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/003843/human_med_001803.jsp&mid=WC-0b01ac058001d124

  29. Cheah CY, Fowler NH. Idelalisib in the management of lymphoma. Blood. 2016;128(3):331–6

    Article  CAS  Google Scholar 

  30. Bundesinstitut für Arzneimittel und Medizinprodukte. Rote-Hand-Brief zu Zydelig® (Idelalisib): Einschränkungen für die Anwendung. 2016 [28.08.2018]; https://www.bfarm.de/SharedDocs/Risikoinformationen/Pharmakovigilanz/DE/RHB/2016/rhb-zydelig.html

  31. Hanada M et al. Bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood. 1993;82(6):1820–8

    CAS  PubMed  Google Scholar 

  32. Souers AJ et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19(2):202–8

    Article  CAS  Google Scholar 

  33. European Medicines Agency. Venclyxto. [28.08.2018]; http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/004106/human_med_002045.jsp&mid=WC0b01ac058001d124

  34. Stilgenbauer S et al. Venetoclax for Patients With Chronic Lymphocytic Leukemia With 17p Deletion: Results From the Full Population of a Phase II Pivotal Trial. J Clin Oncol. 2018;36(19):1973–80

    Article  CAS  Google Scholar 

  35. Davids MS et al. Comprehensive Safety Analysis of Venetoclax Monotherapy for Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia. Clin Cancer Res. 2018;24(18):4371–9

    Article  CAS  Google Scholar 

  36. Kochenderfer JN, Rosenberg SA. Treating B-cell cancer with T cells expressing anti- CD19 chimeric antigen receptors. Nat Rev Clin Oncol. 2013;10(5):267–76

    Article  CAS  Google Scholar 

  37. Kalos M et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73

    Article  CAS  Google Scholar 

  38. Porter D et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7(303):303ra139

    Article  Google Scholar 

  39. Fraietta JA et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018;24(5):563–71

    Article  CAS  Google Scholar 

  40. Gong J et al. Development of PD-1 and PDL1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018;6(1):8

    Article  Google Scholar 

  41. Ding W et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood. 2017;129(26):3419–27

    Article  CAS  Google Scholar 

  42. Woyach JA et al. Ibrutinib Regimens versus Chemoimmunotherapy in Older Patients with Untreated CLL. N Engl J Med. 2018;379(26):2517–28

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas P. Frenzel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beckmann, L., Hallek, M. & Frenzel, L.P. Neue Therapiemöglichkeiten für Patienten mit CLL. Im Focus Onkologie 22, 18–24 (2019). https://doi.org/10.1007/s15015-019-0049-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15015-019-0049-y

Navigation