LASERTHERAPIE UND SCHLAGANFALL — QUANTIFIZIERUNG VON METHODISCHEN VORAUSSETZUNGEN UNTER BERÜCKSICHTIGUNG DES GELBEN LASERS

LASER THERAPY AND STROKE — QUANTIFICATION OF METHODOLOGICAL REQUIREMENTS IN CONSIDERATION OF YELLOW LASER

Zusammenfassung

Jedes Jahr erleiden mehr als 600 000 Europäer/Innen einen Schlaganfall. Dies ist mit enormen Belastungen für das Gesundheitssystem verbunden und es muss davon ausgegangen werden, dass die Häufigkeit von Schlaganfällen in den nächsten Jahrzehnten ansteigen wird. Zusätzlich zu der konventionellen medikamentösen Therapie wird der Schlaganfall manchmal mit hoch-invasiven Methoden behandelt. Nicht-invasive Lasermethoden werden hingegen durch den Schädelknochen angewandt. In Laserstudien weltweit konnte die Penetration des Laserstrahls durch den Knochen noch nicht sicher festgestellt werden. Derzeit ist es niemandem im Detail bekannt, welche Laser Parameter am intakten Schädel ausgewählt werden müssen, sodass das Laserlicht seine potentielle Wirkung innerhalb des menschlichen Schädelknochens entfalten kann. Die vorliegende Studie demonstriert, dass die Werte für die Wellenlängen 810 nm und 658 nm gut mit bereits vorhandenen Werten aus vorangehenden Experimenten korrelieren. Allerdings muss erwähnt werden, dass die Informationen über den gelben Laser um eine Zehnerpotenz abweichen und somit inkorrekt angegeben wurden. Weitere Forschungen zur Auswahl korrekter Wellenlängen und Parameter könnten die gesamte Lasertherapie positiv beeinflussen.

Summary

Every year more than 600 000 Europeans suffer a stroke. This burdens the health system and it can be assumed that the incidence of stroke will increase in the coming decades. In addition to conventional methods of drug therapy, stroke is sometimes treated with highly invasive methods. The non-invasive laser procedures on the other hand operate through the bony skull. Large-scale laser studies are being conducted with varying degrees of success around the world, and without the certainty that the corresponding laser beam even penetrates the bone. No one currently knows in detail the laser parameters that have to be chosen on the intact skull, so that the laser light can develop its possible efficacy inside the human skull. The present study demonstrates that the values for the wavelengths 810 nm and 658 nm correlate well with previous experimental findings. However the information on the yellow laser was estimated incorrectly by a factor of ten by other authors. Further research on the topic is important so that one can be sure to apply the correct wavelength and parameters. This can open up new dimensions in transcranial laser therapy, not only in stroke patients.

This is a preview of subscription content, log in to check access.

Abb. 1:
Abb. 2:
Abb. 3:

Literatur

  1. [1]

    Hennerici MG, Kern R, Szabo K. Non-pharmacological strategies for the treatment of acute ischaemic stroke. Lancet Neurol 2013;12:572–84.

    Article  Google Scholar 

  2. [2]

    Wan S, Parrish JA, Anderson RR, Madden M. Transmittance of nonionizing radiation in human tissues. Photochem Photobiol 1981;34(6):679–81.

    CAS  Article  Google Scholar 

  3. [3]

    Damestani Y, Reynolds CL, Szu J, Hsu MS, Kodera Y, Binder DK, Park BH, Garay JE, Rao MP, Aguilar G. Transparent nanocrystalline yttria-stabilized-zirconia calvarium prosthesis. Nanomedicine 2013;9(8):1135–8.

    CAS  Article  Google Scholar 

  4. [4]

    Barrett DW, Gonzalez-Lima F. Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience 2013;230:13–23.

    CAS  Article  Google Scholar 

  5. [5]

    Konstantinovi'c LM, Jeli'c MB, Jeremi'c A, Stevanovi'c VB, Milanovi'c SD, Filipovi'c SR.Transcranial application of nearinfrared low-level laser can modulate cortical excitability. Lasers Surg Med 2013; Epub ahead of print.

  6. [6]

    Yip S, Zivin J. Laser therapy in acute stroke treatment. Int J Stroke 2008; 3(2):88–91.

    Article  Google Scholar 

  7. [7]

    Huisa BN, Stemer AB, Walker MG, Rapp K, Meyer BC, Zivin JA; NEST-1 and -2 investigators. Transcranial laser therapy for acute ischemic stroke: a pooled analysis of NEST-1 and NEST- 2. Int J Stroke 2013;8(5):315-20.

    Google Scholar 

  8. [8]

    Stemer AB, Huisa BN, Zivin JA. The evolution of transcranial laser therapy for acute ischemic stroke, including a pooled analysis of NEST-1 and NEST-2. Curr Cardiol Rep 2010;12(1):29–33.

    Article  Google Scholar 

  9. [9]

    Kasner SE, Rose DZ, Skokan A, Walker MG, Shi J, Streeter J; NEST-2 Steering Committee and Investigators. Transcranial laser therapy and infarct volume. Stroke 2013; 44(7):2025–7.

    Article  Google Scholar 

  10. [10]

    Schellinger PD, Köhrmann M. Near-infrared laser treatment of acute stroke: from bench to bedside. Nervenarzt 2012; 83(8):966–74. German.

    CAS  Article  Google Scholar 

  11. [11]

    Lapchak PA. Taking a light approach to treating acute ischemic stroke patients: transcranial near-infrared laser therapy translational science. Ann Med 2010;42(8):576–86.

    Article  Google Scholar 

  12. [12]

    Zivin JA, Albers GW, Bornstein N, Chippendale T, Dahlof B, Devlin T, Fisher M, Hacke W, Holt W, Ilic S, Kasner S, Lew R, Nash M, Perez J, Rymer M, Schellinger P, Schneider D, Schwab S, Veltkamp R, Walker M, Streeter J; NeuroThera Effectiveness and Safety Trial-2 Investigators. Effectiveness and safety of transcranial laser therapy for acute ischemic stroke. Stroke 2009;40(4):1359–64.

    Article  Google Scholar 

  13. [13]

    Rojas JC, Lee J, John JM, Gonzalez-Lima F. Neuroprotective effects of near-infrared light in an in vivo model of mitochondrial optic neuropathy. J Neurosci 2008;28(50):13511–21.

    CAS  Article  Google Scholar 

  14. [14]

    Lapchak PA. Transcranial near-infrared laser therapy applied to promote clinical recovery in acute and chronic neurodegenerative diseases. Expert Rev Med Devices 2012;9(1):71–83.

    Article  Google Scholar 

  15. [15]

    Hashmi JT, Huang YY, Osmani BZ, Sharma SK, Naeser MA, Hamblin MR. Role of low-level laser therapy in neurorehabilitation. PM R 2010;2(12 Suppl 2):S292–305.

    Article  Google Scholar 

  16. [16]

    Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Bernabeu M, Tormos JM, Pascual-Leone A. Noninvasive brain stimulation in traumatic brain injury. J Head Trauma Rehabil 2012;27(4):274–92.

    Article  Google Scholar 

  17. [17]

    Schiffer F, Johnston AL, Ravichandran C, Polcari A, Teicher MH, Webb RH, Hamblin MR. Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety. Behav Brain Funct 2009;5:46.

    Article  Google Scholar 

  18. [18]

    Naeser MA, Saltmarche A, Krengel MH, Hamblin MR, Knight JA. Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports. Photomed Laser Surg 2011;29(5):351–8.

    Article  Google Scholar 

  19. [19]

    Naeser MA, Hamblin MR. Potential for transcranial laser or LED therapy to treat stroke, traumatic brain injury, and neurodegenerative disease. Photomed Laser Surg 2011;29(7):443–6.

    Article  Google Scholar 

  20. [20]

    Zivin JA, Sehra R, Shoshoo A, Albers GW, Bornstein NM, Dahlof B, Kasner SE, Howard G, Shuaib A, Streeter J, Richieri SP, Hacke W, NEST-3 investigators. NeuroThera Efficacy and Safety trial — 3 (NEST-3): a double-blind, randomized, sham-controlled, parallel group, multicenter, pivotal study to assess the safety and efficacy of transcranial laser therapy with the NeuroThera Laser System for the treatment of acute ischemic stroke within 24h of stroke onset. Int J Stroke 2012. Epub ahead of print.

  21. [21]

    Lampl Y, Zivin JA, Fisher M, Lew R, Welin L, Dahlof B, Borenstein P, Andersson B, Perez J, Caparo C, Ilic S, Oron U. Infrared laser therapy for ischemic stroke: a new treatment strategy: results of the NeuroThera Effectiveness and Safety Trial-1 (NEST-1). Stroke 2007;38(6):1843–9.

    Article  Google Scholar 

  22. [22]

    Harris SE, Field JE, Imamoglu A. Nonlinear optical processes using electromagnetically induced transparency. Phys Rev Lett 1990;64(10):1107–10.

    CAS  Article  Google Scholar 

  23. [23]

    Weis S, Rivi„re R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg TJ. Optomechanically induced transparency. Science 2010;330(6010):1520–3.

    CAS  Article  Google Scholar 

  24. [24]

    Scherman M, Mishina OS, Lombardi P, Giacobino E, Laurat J. Enhancing electromagnetically-induced transparency in a multilevel broadened medium. Opt Express 2012;20(4):4346–51.

    CAS  Article  Google Scholar 

  25. [25]

    Olivo M, Fu CY, Raghavan V, Lau WK. New frontier in hypericin- mediated diagnosis of cancer with current optical technologies. Ann Biomed Eng 2012;40(2):460–73.

    Article  Google Scholar 

  26. [26]

    Weber M. New treatment protocols in photodynamic laser therapy of tumors. The International Journal of Medical Laser Applications 2013;1(1):7–8.

    Google Scholar 

  27. [27]

    Litscher D, Litscher G. Laser therapy and stroke: quantification of methodological requirements in consideration of yellow laser. International Journal of Photoenergy 2013; article ID 575798.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mag. pharm. Daniela Litscher.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Litscher, D., Litscher, G. LASERTHERAPIE UND SCHLAGANFALL — QUANTIFIZIERUNG VON METHODISCHEN VORAUSSETZUNGEN UNTER BERÜCKSICHTIGUNG DES GELBEN LASERS. Akupunkt Aurikulomed 40, 25–29 (2014). https://doi.org/10.1007/s15009-014-5257-0

Download citation

Schlüsselwörter

  • Lasermedizin
  • transkranielle Lasertherapie
  • Schlaganfall
  • gelber Laser
  • Phototherapie

Keywords

  • Laser medicine
  • transcranial laser therapy
  • stroke
  • yellow laser
  • phototherapy