Advertisement

Orthopädie & Rheuma

, Volume 21, Issue 2, pp 27–35 | Cite as

Harmloser Zufallsbefund oder therapiebedürftige Erkrankung?

Das Knochenmarködem am Kniegelenk: eine diagnostische Herausforderung

  • Marcus Jäger
  • Florian Dittrich
  • Katharina Harren
Zertifizierte Fortbildung
  • 200 Downloads

Zusammenfassung

Das Knochenmarködem (KMÖ) am Kniegelenk ist ein relativ häufiger Befund in der Magnetresonanztomografie (MRT). Pathophysiologisch liegt dem KMÖ eine gestörte vaskuläre Perfusion mit einer intraossären Druckerhöhung zugrunde. Häufig wird das KMÖ von Schmerzen begleitet, jedoch auch als Zufallsbefund bei asymptomatischen Patienten beobachtet. Als unspezifische, bildmorphologische Erscheinung ist die Abgrenzung zwischen einem spontan reversiblen Knochenmarködemsyndrom, entzündlichen Prozessen, dem Frühstadium der avaskulären Osteonekrose oder einer zugrunde liegenden Knorpelschädigungen schwierig. Nicht zuletzt aufgrund der unterschiedlichen Therapie ist die differenzialdiagnostische Einschätzung des kniegelenknahen KMÖ eine klinische Herausforderung.

Literatur

  1. 1.
    Curtiss Jr, P.H. and W.E. Kincaid, Transitory demineralization of the hip in pregnancy: a report of three cases. JBJS, 1959. 41(7): p. 1327–1333.CrossRefGoogle Scholar
  2. 2.
    Adam, G., et al. MR-Tomographie avaskulärer Knochennekrosen: Primärbefunde und Verlaufsbeobachtungen nach Markraumdekompression. in RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren. 1995. © Georg Thieme Verlag Stuttgart• New York.Google Scholar
  3. 3.
    Karantanas, A.H. and E.E. Drakonaki. The role of MR imaging in avascular necrosis of the femoral head. in Seminars in musculoskeletal radiology. 2011. © Thieme Medical Publishers.Google Scholar
  4. 4.
    Orth, P. and K. Anagnostakos, Coagulation abnormalities in osteonecrosis and bone marrow edema syndrome. Orthopedics, 2013. 36(4): p. 290–300.CrossRefGoogle Scholar
  5. 5.
    Claßen, T., et al., Long-term clinical results after iloprost treatment for bone marrow edema and avascular necrosis. Orthopedic reviews, 2016. 8(1).Google Scholar
  6. 6.
    Marcacci, M., et al., Aetiology and pathogenesis of bone marrow lesions and osteonecrosis of the knee. EFORT Open Reviews, 2016. 1(5): p. 219–224.CrossRefGoogle Scholar
  7. 7.
    Berman, N., et al., Transient osteoporosis: Not just the hip to worry about. Bone reports, 2016. 5: p. 308–311.CrossRefGoogle Scholar
  8. 8.
    Geith, T., et al., Transient bone marrow edema syndrome versus osteonecrosis: perfusion patterns at dynamic contrast-enhanced MR imaging with high temporal resolution can allow differentiation. Radiology, 2016. 283(2): p. 478–485.CrossRefGoogle Scholar
  9. 9.
    Kon, E., et al., Bone marrow lesions and subchondral bone pathology of the knee. Knee Surgery, Sports Traumatology, Arthroscopy, 2016. 24(6): p. 1797–1814.CrossRefGoogle Scholar
  10. 10.
    Seamon, J., et al., The pathogenesis of nontraumatic osteonecrosis. Arthritis, 2012. 2012.CrossRefGoogle Scholar
  11. 11.
    Drescher, W., et al., Femoral head blood flow reduction and hypercoagulability under 24 h megadose steroid treatment in pigs. Journal of Orthopaedic Research, 2004. 22(3): p. 501–508.CrossRefGoogle Scholar
  12. 12.
    Inoue, S., et al., Risk factors for nontraumatic osteonecrosis of the femoral head afterrenal transplantation. Journal of orthopaedic science, 2003. 8(6): p. 751–756.CrossRefGoogle Scholar
  13. 13.
    Jones, L.C., et al., Procoagulants and osteonecrosis. The Journal of rheumatology, 2003. 30(4): p. 783–791.PubMedGoogle Scholar
  14. 14.
    Simank, H.-G., et al., Core decompression in osteonecrosis of the femoral head: risk-factor-dependent outcome evaluation using survivorship analysis. International orthopaedics, 1999. 23(3): p. 154–159.CrossRefGoogle Scholar
  15. 15.
    Kemper, O., et al., Prostacyclin suppresses twist expression in the presence of indomethacin in bone marrow-derived mesenchymal stromal cells. Medical science monitor: international medical journal of experimental and clinical research, 2014. 20: p. 2219.CrossRefGoogle Scholar
  16. 16.
    Banaszkiewicz, P.A., Idiopathic bone necrosis of the femoral head. Early diagnosis and treatment, in Classic Papers in Orthopaedics. 2014, Springer. p. 121-123.Google Scholar
  17. 17.
    Plenk Jr, H., et al., Pathomorphologische Aspekte und Reparaturmechanismen der Femurkopfosteonekrose. Der Orthopäde, 2000. 29(5): p. 389–402.PubMedGoogle Scholar
  18. 18.
    Budzik, J.-F., et al., Perfusion of subchondral bone marrow in knee osteoarthritis: A dynamic contrast-enhanced magnetic resonance imaging preliminary study. European Journal of Radiology, 2017. 88: p. 129–134.CrossRefGoogle Scholar
  19. 19.
    Viskontas, D.G., et al., Bone bruises associated with ACL rupture: correlation with injury mechanism. The American journal of sports medicine, 2008. 36(5): p. 927–933.CrossRefGoogle Scholar
  20. 20.
    Vellet, A.D., et al., Occult posttraumatic osteochondral lesions of the knee: prevalence, classification, and short-term sequelae evaluated with MR imaging. Radiology, 1991. 178(1): p. 271–276.CrossRefGoogle Scholar
  21. 21.
    Takahashi, T., et al., MR appearance of autologous chondrocyte implantation in the knee: correlation with the knee features and clinical outcome. Skeletal radiology, 2006. 35(1): p. 16–26.CrossRefGoogle Scholar
  22. 22.
    Harper, P.G., C. Trask, and R.L. Souhami, Avascular necrosis of bone caused by combination chemotherapy without corticosteroids. Br Med J (Clin Res Ed), 1984. 288(6413): p. 267–268.CrossRefGoogle Scholar
  23. 23.
    Filardo, G., et al., Is the clinical outcome after cartilage treatment affected by subchondral bone edema? Knee Surgery, Sports Traumatology, Arthroscopy, 2014. 22(6): p. 1337–1344.CrossRefGoogle Scholar
  24. 24.
    Roemer, F.W., et al., Change in MRI-detected subchondral bone marrow lesions is associated with cartilage loss: the MOST Study. A longitudinal multicentre study of knee osteoarthritis. Annals of the rheumatic diseases, 2009. 68(9): p. 1461–1465.CrossRefGoogle Scholar
  25. 25.
    Scher, C., J. Craig, and F. Nelson, Bone marrow edema in the knee in osteoarthrosis and association with total knee arthroplasty within a three-year follow-up. Skeletal radiology, 2008. 37(7): p. 609–617.CrossRefGoogle Scholar
  26. 26.
    Jäger, M. and R. Krauspe, Osteonekrosen. Pathogenese- Diagnostik- Therapie- Verlauf. UNI- MED, 2007. 1.Google Scholar
  27. 27.
    Strauss, M.B., et al., Reduction of skeletal muscle necrosis using intermittent hyperbaric oxygen in a model compartment syndrome. JBJS, 1983. 65(5): p. 656–662.CrossRefGoogle Scholar
  28. 28.
    Hofmann, S. and B. Mazieres, Osteonecrosis: natural course and conservative therapy. Der Orthopade, 2000. 29(5): p. 403–410.PubMedGoogle Scholar
  29. 29.
    Boerma, I., Life without blood. A study of the influence of high atmospheric pressure and hyperthermia on dilution of the blood. J. Cardiovasc Surg.(Torino), 1960. 1: p. 133–146.Google Scholar
  30. 30.
    Bird, A. and A. Telfer, Effect of hyperbaric oxygen on limb circulation. The Lancet, 1965. 285(7381): p. 355–356.CrossRefGoogle Scholar
  31. 31.
    Strauss, M., et al., Femoral head necrosis and hyperbaric oxygen therapy. Hyperbaric medicine practice. Best Publishing Co, 1999. 912.Google Scholar
  32. 32.
    Skyhar, M., et al., Hyperbaric oxygen reduces edema and necrosis of skeletal muscle in. J Bone Joint Surg Am, 1986. 68: p. 1218–1224.CrossRefGoogle Scholar
  33. 33.
    Wolfe, C.J. and K.L. Taylor-Butler, Avascular necrosis: a case history and literature review. Archives of family medicine, 2000. 9(3): p. 291.CrossRefGoogle Scholar
  34. 34.
    Oriani, G., et al., Physiology and physiopathology of hyperbaric oxygen, in Handbook on hyperbaric medicine. 1996, Springer. p. 1-34.Google Scholar
  35. 35.
    Glueck, C.J., et al., Thrombophilia and Hypofibrinolysis; Pathophysiologies of Osteonecrosis. Clinical orthopaedics and related research, 1997. 334: p. 43–56.CrossRefGoogle Scholar
  36. 36.
    Glueck, C.J., et al., Estrogen replacement in a protein S deficient patient leads to diarrhea, hyperglucagonemia, and osteonecrosis. Jop, 2001. 2(5): p. 323–329.PubMedGoogle Scholar
  37. 37.
    Niethammer, T.R., et al., Bone marrow edema in the knee and its influence on clinical outcome after matrix-based autologous chondrocyte implantation: results after 3-year follow-up. The American journal of sports medicine, 2015. 43(5): p. 1172–1179.CrossRefGoogle Scholar
  38. 38.
    Leschke, M., W. Klimek, and F. Jung, [Rheological determinants of end-organ damage]. Internist (Berl), 2003. 44(7): p. 853–63.CrossRefGoogle Scholar
  39. 39.
    Laroche, M., et al., Nifedipine per os relieves the pain caused by osteonecrosis of the femur head. Revue du rhumatisme et des maladies osteo-articulaires, 1990. 57(9): p. 669–670.PubMedGoogle Scholar
  40. 40.
    Arlet, J., et al., The Effect of IV Injection of Naftidrofuryl (Praxilene) on Intramedullary Pressure in Patients with Osteonecrosis of the Femoral Head, in Bone Circulation and Bone Necrosis. 1990, Springer. p. 405-406.Google Scholar
  41. 41.
    Jäger, M., et al., Rationale for prostaglandin I 2 in bone marrow oedema—from theory to application. Arthritis research & therapy, 2008. 10(5): p. R120.CrossRefGoogle Scholar
  42. 42.
    Jäger, M., et al., Efficiency of iloprost treatment for osseous malperfusion. International orthopaedics, 2011. 35(5): p. 761–765.CrossRefGoogle Scholar
  43. 43.
    Jaeger, M., et al., Efficiency of iloprost treatment for chemotherapy-associated osteonecrosis after childhood cancer. Anticancer research, 2009. 29(8): p. 3433–3440.Google Scholar
  44. 44.
    Jäger, M., et al., Schmerztherapie bei nichtjuvenilen, aseptischen Osteonekrosen. Der Schmerz, 2004. 18(6): p. 481–491.CrossRefGoogle Scholar
  45. 45.
    Schermuly, R.T., et al., Antiremodeling effects of iloprost and the dual-selective phosphodiesterase 3/4 inhibitor tolafentrine in chronic experimental pulmonary hypertension. Circulation research, 2004. 94(8): p. 1101–1108.CrossRefGoogle Scholar
  46. 46.
    Winet, H., J.Y. Bao, and R. Moffat, A control model for tibial cortex neovascularization in the bone chamber. Journal of Bone and Mineral Research, 1990. 5(1): p. 19–30.CrossRefGoogle Scholar
  47. 47.
    Izbicka, E., et al., Human amniotic tumor that induces new bone formation in vivo produces a growth-regulatory activity in vitro for osteoblasts identified as an extended form of basic fibroblast growth factor. Cancer research, 1996. 56(3): p. 633–636.PubMedGoogle Scholar
  48. 48.
    Mazieres, B., Bone morphogenetic protein and bone necrosis: a perspective. Arco News, 1994. 6: p. 3–5.Google Scholar
  49. 49.
    Scully, S., et al., Augmentation of subchondral bone formation in AVN with rhBMP-2.Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Marcus Jäger
    • 1
  • Florian Dittrich
    • 2
  • Katharina Harren
    • 2
  1. 1.Klinik für Orthopädie und UnfallchirurgieUniversität Duisburg-Essen, Universitätsklinikum EssenEssenDeutschland
  2. 2.

Personalised recommendations