Skip to main content
Log in

Endogenous Stem Cells in Homeostasis and Aging

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

A Correction to this article was published on 19 May 2018

This article has been updated

Abstract

In almost all human tissues and organs, adult stem cells or tissue stem cells are present in a unique location, the so-called stem cell niche or its equivalent, continuously replenishing functional differentiated cells. Those endogenous stem cells can be expanded for cell therapeutics using ex vivo cell culture or recalled for tissue repair in situ through cell trafficking and homing. In the aging process, inefficiency in the endogenous stem cell–mediated healing mechanism can emerge from a variety of impairments that accumulate in the processes of stem cell self-renewal, function, differentiation capacity, and trafficking through cell autonomous intrinsic pathways (such as epigenetic alterations) or systemic extrinsic pathways. This review examines the homeostasis of endogenous stem cells, particularly bone marrow stem cells, and their dysregulation in disease and aging and discusses possible intervention strategies. Several systemic pro-aging and rejuvenating factors, recognized in heterochronic parabiosis or premature aging progeroid animal models, are reviewed as possible anti-aging pharmaceutical targets from the perspective of a healthy environment for endogenous stem cells. A variety of epigenetic modifications and chromosome architectures are reviewed as an intrinsic cellular pathway for aging and senescence. A gradual increase in inflammatory burden during aging is also reviewed. Finally, the tissue repair and anti-aging effects of Substance-P, a peptide stimulating stem cell trafficking from the bone marrow and modifying the inflammatory response, are discussed as a future anti-aging target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 19 May 2018

    Regrettably, in the previous version of this article, two important references ([47-2, 173] were missing. The authors would like to make following corrections in the original version of the article.

References

  1. Oh J, Lee YD, Wagers AJ. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med. 2014;20:870–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ogawa T, Kitagawa M, Hirokawa K. Age-related changes of human bone marrow: a histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophages. Mech Ageing Dev. 2000;117:57–68.

    Article  PubMed  CAS  Google Scholar 

  4. Beauséjour C. Bone marrow-derived cells: the influence of aging and cellular senescence. Handb Exp Pharmacol. 2007;180:67–88.

    Article  Google Scholar 

  5. Eggel A, Wyss-Coray T. A revival of parabiosis in biomedical research. Swiss Med Wkly. 2014;144:w13914.

    PubMed  PubMed Central  Google Scholar 

  6. Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, Yalamanchi P, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013;153:828–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011;477:90–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007;128:92–105.

    Article  PubMed  CAS  Google Scholar 

  9. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69:S4–9.

    Article  PubMed  Google Scholar 

  10. Welner RS, Kincade PW. 9-1-1: HSCs respond to emergency calls. Cell Stem Cell. 2014;14:415–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Warr MR, Pietras EM, Passegué E. Mechanisms controlling hematopoietic stem cell functions during normal hematopoiesis and hematological malignancies. Wiley Interdiscip Rev Syst Biol Med. 2011;3:681–701.

    Article  PubMed  CAS  Google Scholar 

  12. Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med. 2014;20:833–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Katsimpardi L, Litterman NK, Schein PA, Miller CM, Lofferedo FS, Wojtkiewicz GR, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science. 2014;344:630–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Elabd C, Cousin W, Upadhyayula P, Chen RY, Chooljian MS, Li J, et al. Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nat Commun. 2014;5:4082.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Rodgers JT, Schroeder MD, Ma C, Rando TA. HGFA is an injury-regulated systemic factor that induces the transition of stem cells into GAlert. Cell Rep. 2017;19:479–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Salminen A, Kaarniranta K, Kauppinen A. Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging. 2012;4:166–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wang LD, Wagers AJ. Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol. 2011;12:643–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Spangrude GJ, Heimfeld S, Weissman IL. Purification and characterization of mouse hematopoietic stem cells. Science. 1988;241:58–62.

    Article  PubMed  CAS  Google Scholar 

  19. Seita J, Weissman IL. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med. 2010;2:640–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121:1109–21.

    Article  PubMed  CAS  Google Scholar 

  21. Oguro H, Ding L, Morrison SJ. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell. 2013;13:102–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Nakamura-Ishizu A, Takizawa H, Suda T. The analysis, roles and regulation of quiescence in hematopoietic stem cells. Development. 2014;141:4656–66.

    Article  PubMed  CAS  Google Scholar 

  23. Ortells MC, Keyes WM. New insights into skin stem cell aging and cancer. Biochem Soc Trans. 2014;42:663–9.

    Article  PubMed  CAS  Google Scholar 

  24. Pang WW, Price EA, Sahoo D, Beerman I, Maloney WJ, Rossi DJ, et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci U S A. 2011;108:20012–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Challen GA, Boles NC, Chambers SM, Goodell MA. Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1. Cell Stem Cell. 2010;6:265–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Satoh Y, Yokota T, Sudo T, Kondo M, Lai A, Kincade PW, et al. The Satb1 protein directs hematopoietic stem cell differentiation toward lymphoid lineages. Immunity. 2013;38:1105–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Florian MC, Dörr K, Niebel A, Daria D, Schrezenmeier H, Rojewski M, et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell. 2012;10:520–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Signer RA, Morrison SJ. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell. 2013;12:152–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Gur-Cohen S, Itkin T, Chakrabarty S, Graf C, Kollet O, Ludin A, et al. PAR1 signaling regulates the retention and recruitment of EPCR-expressing bone marrow hematopoietic stem cells. Nat Med. 2015;21:1307–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Beyer Nardi N, da Silva Meirelles L. Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb Exp Pharmacol. 2006;174:249–82.

    Article  Google Scholar 

  31. Gregory CA, Prockop DJ, Spees JL. Non-hematopoietic bone marrow stem cells: molecular control of expansion and differentiation. Exp Cell Res. 2005;306:330–5.

    Article  PubMed  CAS  Google Scholar 

  32. Lim J, Park EK. Effect of fibroblast growth factor-2 and retinoic acid on lineage commitment of bone marrow mesenchymal stem cells. Tissue Eng Regen Med. 2016;13:47–56.

    Article  CAS  Google Scholar 

  33. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  PubMed  CAS  Google Scholar 

  34. Lepperdinger G. Inflammation and mesenchymal stem cell aging. Curr Opin Immunol. 2011;23:518–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ryan JM, Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond). 2005;2:8.

    Article  CAS  Google Scholar 

  36. Jin IG, Kim JH, Wu HG, Hwang SJ. Effect of mesenchymal stem cells and platelet-derived growth factor on the healing of radiation induced ulcer in rats. Tissue Eng Regen Med. 2016;13:78–90.

    Article  CAS  Google Scholar 

  37. Huh SW, Shetty AA, Kim JM, Cho MR, Kim SA, Yang S, et al. Autologous bone marrow mesenchymal cell induced chondrogenesis for the treatment of osteoarthritis of knee. Tissue Eng Regen Med. 2016;13:200–9.

    Article  CAS  Google Scholar 

  38. Raggi C, Berardi AC. Mesenchymal stem cells, aging and regenerative medicine. Muscles Ligaments Tendons J. 2012;2:239–42.

    PubMed  PubMed Central  Google Scholar 

  39. Yang YM, Li P, Cui DC, Dang RJ, Zhang L, Wen N, et al. Effect of aged bone marrow microenvironment on mesenchymal stem cell migration. Age (Dordr). 2015;37:16.

    Article  CAS  Google Scholar 

  40. Kennedy M, Firpo M, Choi K, Wall C, Robertson S, Kabrun N, et al. A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature. 1997;386:488–93.

    Article  PubMed  CAS  Google Scholar 

  41. Hristov M, Weber C. Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance. J Cell Mol Med. 2004;8:498–508.

    Article  PubMed  Google Scholar 

  42. Yoder MC. Human endothelial progenitor cells. Cold Spring Harb Perspect Med. 2012;2:a006692.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Williamson K, Stringer SE, Alexander MY. Endothelial progenitor cells enter the aging arena. Front Physiol. 2012;3:30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. He T, Joyner MJ, Katusic ZS. Aging decreases expression and activity of glutathione peroxidase-1 in human endothelial progenitor cells. Microvasc Res. 2009;78:447–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ma FX, Zhou B, Chen Z, Ren Q, Lu SH, Sawamura T, et al. Oxidized low density lipoprotein impairs endothelial progenitor cells by regulation of endothelial nitric oxide synthase. J Lipid Res. 2006;47:1227–37.

    Article  PubMed  CAS  Google Scholar 

  46. Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science. 2014;344:649–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Elliott BT, Herbert P, Sculthorpe N, Grace FM, Stratton D, Hayes LD. Lifelong exercise, but not short-term high-intensity interval training, increases GDF11, a marker of successful aging: a preliminary investigation. Physiol Rep. 2017;5:e13343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Egerman MA, Cadena SM, Gilbert JA, Meyer A, Nelson HN, Swalley SE, et al. GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab. 2015;22:164–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Walker RG, Poggioli T, Katsimpardi L, Buchanan SM, Oh J, Wattrus S, et al. Biochemistry and biology of GDF11 and myostatin: similarities, differences, and questions for future investigation. Circ Res. 2016;118:1125–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Harper SC, Brack A, MacDonnell S, Franti M, Olwin BB, Bailey BA, et al. Is growth differentiation factor 11 a realistic therapeutic for aging-dependent muscle defects? Circ Res. 2016;118:1143–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hammers DW, Merscham-Banda M, Hsiao JY, Engst S, Hartman JJ, Sweeney HL. Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med. 2017;9:531–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Scopelliti A, Cordero JB, Diao F, Strathdee K, White BH, Sansom OJ, et al. Local control of intestinal stem cell homeostasis by enteroendocrine cells in the adult drosophila midgut. Curr Biol. 2014;24:1199–211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Fu X, Wang H, Hu P. Stem cell activation in skeletal muscle regeneration. Cell Mol Life Sci. 2015;72:1663–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Zarnegar R, Michalopoulos GK. The many faces of hepatocyte growth factor: from hepatopoiesis to hematopoiesis. J Cell Biol. 1995;129:1177–80.

    Article  PubMed  CAS  Google Scholar 

  55. Rodgers JT, King KY, Brett JO, Cromie MJ, Charville GW, Maguire KK, et al. mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(alert). Nature. 2014;510:393–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Fernandez-Egea E, Scoriels L, Theegala S, Giro M, Ozanne SE, Burling K, et al. Cannabis use is associated with increased CCL11 plasma levels in young healthy volunteers. Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:25–8.

    Article  PubMed  CAS  Google Scholar 

  57. Smith LK, He Y, Park JS, Bieri G, Snethlage CE, Lin K, et al. Beta2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat Med. 2015;21:932–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. McArthur JC, Nance-Sproson TE, Griffin DE, Hoover D, Selnes OA, Miller EN, et al. The diagnostic utility of elevation in cerebrospinal fluid beta 2-microglobulin in HIV-1 dementia. Multicenter AIDS cohort study. Neurology. 1992;42:1707–12.

    Article  PubMed  CAS  Google Scholar 

  59. Brew BJ, Dunbar N, Pemberton L, Kaldor J. Predictive markers of AIDS dementia complex: CD4 cell count and cerebrospinal fluid concentrations of beta 2-microglobulin and neopterin. J Infect Dis. 1996;174:294–8.

    Article  PubMed  CAS  Google Scholar 

  60. Carrette O, Demalte I, Scherl A, Yalkinoglu O, Corthals G, Burkhard P, et al. A panel of cerebrospinal fluid potential biomarkers for the diagnosis of alzheimer’s disease. Proteomics. 2003;3:1486–94.

    Article  PubMed  CAS  Google Scholar 

  61. Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI, Luo J, et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med. 2014;20:659–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Kaiser J. Aging. ‘Rejuvenation factor’ in blood turns back the clock in old mice. Science. 2014;344:570–1.

    Article  PubMed  CAS  Google Scholar 

  63. Pinho S, Lacombe J, Hanoun M, Mizoguchi T, Bruns I, Kunisaki Y, et al. PDGFRα and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med. 2013;210:1351–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25:977–88.

    Article  PubMed  CAS  Google Scholar 

  65. Doan PL, Himburg HA, Helms K, Russell JL, Fixsen E, Quarmyne M, et al. Epidermal growth factor regulates hematopoietic regeneration after radiation injury. Nat Med. 2013;19:295–304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Himburg HA, Harris JR, Ito T, Daher P, Russell JL, Quarmyne M, et al. Pleiotrophin regulates the retention and self-renewal of hematopoietic stem cells in the bone marrow vascular niche. Cell Rep. 2012;2:964–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Hofmeister CC, Zhang J, Knight KL, Le P, Stiff PJ. Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche. Bone Marrow Transplant. 2007;39:11–23.

    Article  PubMed  CAS  Google Scholar 

  68. Fujisaki J, Wu J, Carlson AL, Silberstein L, Putheti P, Larocca R, et al. In vivo imaging of treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature. 2011;474:216–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell. 2011;147:1146–58.

    Article  PubMed  CAS  Google Scholar 

  70. Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466:829–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood. 2010;116:4815–28.

    Article  PubMed  CAS  Google Scholar 

  72. Hur J, Choi JI, Lee H, Nham P, Kim TW, Chae CW, et al. CD82/KAI1 maintains the dormancy of long-term hematopoietic stem cells through interaction with DARC-expressing macrophages. Cell Stem Cell. 2016;18:508–21.

    Article  PubMed  CAS  Google Scholar 

  73. Ludin A, Itkin T, Gur-Cohen S, Mildner A, Shezen E, Golan K, et al. Monocytes-macrophages that express alpha-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nat Immunol. 2012;13:1072–82.

    Article  PubMed  CAS  Google Scholar 

  74. Chávez-Galán L, Olleros ML, Vesin D, Garcia I. Much more than M1 and M2 macrophages, there are also CD169(+) and TCR(+) macrophages. Front Immunol. 2015;6:263.

    PubMed  PubMed Central  Google Scholar 

  75. Chow A, Lucas D, Hidalgo A, Méndez-Ferrer S, Hashimoto D, Scheiermann C, et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med. 2011;208:261–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature. 2009;460:259–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank AM, Bocian C, et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell. 2017;20:771–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Miyamoto K, Yoshida S, Kawasumi M, Hashimoto K, Kimura T, Sato Y, et al. Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization. J Exp Med. 2011;208:2175–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y, et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med. 2006;12:657–64.

    Article  PubMed  CAS  Google Scholar 

  80. Zhang H, Xian L, Lin Z, Yang C, Zhang M, Feng W, et al. Endothelial progenitor cells as a possible component of stem cell niche to promote self-renewal of mesenchymal stem cells. Mol Cell Biochem. 2014;397:235–43.

    Article  PubMed  CAS  Google Scholar 

  81. Zhang HW, Chen XL, Lin ZY, Xia J, Hou JX, Zhou D, et al. Fibronectin chorused cohesion between endothelial progenitor cells and mesenchymal stem cells of mouse bone marrow. Cell Mol Biol (Noisy-le-grand). 2015;61:26–32.

    CAS  Google Scholar 

  82. Chua ILS, Kim HW, Lee JH. Signaling of extracellular matrices for tissue regeneration and therapeutics. Tissue Eng Regen Med. 2016;13:1–12.

    Article  CAS  Google Scholar 

  83. Youssef A, Aboalola D, Han VK. The roles of insulin-like growth factors in mesenchymal stem cell niche. Stem Cells Int. 2017;2017:9453108.

    PubMed  PubMed Central  Google Scholar 

  84. Vafaei R, Nassiri SM, Siavashi V. Beta3-adrenergic regulation of EPC features through manipulation of the bone marrow MSC niche. J Cell Biochem. 2017;118:4753–61.

    Article  PubMed  CAS  Google Scholar 

  85. Pal S, Tyler JK. Epigenetics and aging. Sci Adv. 2016;2:e1600584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Dang W, Sutphin GL, Dorsey JA, Otte GL, Cao K, Perry RM, et al. Inactivation of yeast Isw2 chromatin remodeling enzyme mimics longevity effect of calorie restriction via induction of genotoxic stress response. Cell Metab. 2014;19:952–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Maures TJ, Greer EL, Hauswirth AG, Brunet A. The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner. Aging Cell. 2011;10:980–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Sen P, Dang W, Donahue G, Dai J, Dorsey J, Cao X, et al. H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes Dev. 2015;29:1362–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Greer EL, Maures TJ, Hauswirth AG, Green EM, Leeman DS, Maro GS, et al. Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature. 2010;466:383–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Peleg S, Feller C, Forne I, Schiller E, Sévin DC, Schauer T, et al. Life span extension by targeting a link between metabolism and histone acetylation in drosophila. EMBO Rep. 2016;17:455–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13:225–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Mounkes LC, Kozlov S, Hernandez L, Sullivan T, Stewart CL. A progeroid syndrome in mice is caused by defects in A-type lamins. Nature. 2003;423:298–301.

    Article  PubMed  CAS  Google Scholar 

  93. Carrero D, Soria-Valles C, López-Otín C. Hallmarks of progeroid syndromes: lessons from mice and reprogrammed cells. Dis Model Mech. 2016;9:719–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Voigt P, Tee WW, Reinberg D. A double take on bivalent promoters. Genes Dev. 2013;27:1318–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Sun D, Luo M, Jeong M, Rodriguez B, Xia Z, Hannah R, et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell. 2014;14:673–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Liu L, Cheung TH, Charville GW, Hurgo BM, Leavitt T, Shih J, et al. Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep. 2013;4:189–204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Herzog M, Josseaux E, Dedeurwaerder S, Calonne E, Volkmar M, Fuks F. The histone demethylase Kdm3a is essential to progression through differentiation. Nucleic Acids Res. 2012;40:7219–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Kidder BL, Hu G, Zhao K. KDM5B focuses H3K4 methylation near promoters and enhancers during embryonic stem cell self-renewal and differentiation. Genome Biol. 2014;4:R32.

    Article  CAS  Google Scholar 

  99. Cellot S, Hope KJ, Chagraoui J, Sauvageau M, Deneault É, MacRae T, et al. RNAi screen identifies Jarid1b as a major regulator of mouse HSC activity. Blood. 2013;122:1545–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Beerman I, Bock C, Garrison BS, Smith ZD, Gu H, Meissner A, et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell. 2013;12:413–25.

    Article  PubMed  CAS  Google Scholar 

  101. Li Z, Cai X, Cai CL, Wang J, Zhang W, Petersen BE, et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood. 2011;118:4509–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Bröske AM, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M, et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet. 2009;41:1207–15.

    Article  PubMed  CAS  Google Scholar 

  103. Trowbridge JJ, Snow JW, Kim J, Orkin SH. DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell. 2009;5:442–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Challen GA, Sun D, Mayle A, Jeong M, Luo M, Rodriguez B, et al. Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell. 2014;15:350–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Guo S, Lu J, Schlanger R, Zhang H, Wang JY, Fox MC, et al. MicroRNA miR-125a controls hematopoietic stem cell number. Proc Natl Acad Sci U S A. 2010;107:14229–34.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ooi AG, Sahoo D, Adorno M, Wang Y, Weissman IL, Park CY. MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets. Proc Natl Acad Sci U S A. 2010;107:21505–10.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Yildirim E, Kirby JE, Brown DE, Mercier FE, Sadreyev RI, Scadden DT, et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell. 2013;152:727–42.

    Article  PubMed  CAS  Google Scholar 

  108. Li Z, Liu C, Xie Z, Song P, Zhao RC, Guo L, et al. Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One. 2011;6:e20526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Di Bernardo G, Squillaro T, Dell’Aversana C, Miceli M, Cipollaro M, Cascino A, et al. Histone deacetylase inhibitors promote apoptosis and senescence in human mesenchymal stem cells. Stem Cells Dev. 2009;18:573–81.

    Article  PubMed  CAS  Google Scholar 

  110. So AY, Jung JW, Lee S, Kim HS, Kang KS. DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PLoS One. 2011;6:e19503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Hassan MQ, Tare R, Lee SH, Mandeville M, Weiner B, Montecino M, et al. HOXA10 controls osteoblastogenesis by directly activating bone regulatory and phenotypic genes. Mol Cell Biol. 2007;27:3337–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Wei Y, Chen YH, Li LY, Lang J, Yeh SP, Shi B, et al. CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. Nat Cell Biol. 2011;13:87–94.

    Article  PubMed  CAS  Google Scholar 

  113. Fan Z, Yamaza T, Lee JS, Yu J, Wang S, Fan G, et al. BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat Cell Biol. 2009;11:1002–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Shen J, Hovhannisyan H, Lian JB, Montecino MA, Stein GS, Stein JL, et al. Transcriptional induction of the osteocalcin gene during osteoblast differentiation involves acetylation of histones h3 and h4. Mol Endocrinol. 2003;17:743–56.

    Article  PubMed  CAS  Google Scholar 

  115. Tan J, Lu J, Huang W, Dong Z, Kong C, Li L, et al. Genome-wide analysis of histone H3 lysine9 modifications in human mesenchymal stem cell osteogenic differentiation. PLoS One. 2009;4:e6792.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Arnsdorf EJ, Tummala P, Castillo AB, Zhang F, Jacobs CR. The epigenetic mechanism of mechanically induced osteogenic differentiation. J Biomech. 2010;43:2881–6.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Schoolmeesters A, Eklund T, Leake D, Vermeulen A, Smith Q, Force Aldred S, et al. Functional profiling reveals critical role for miRNA in differentiation of human mesenchymal stem cells. PLoS One. 2009;4:e5605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Huang J, Zhao L, Xing L, Chen D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells. 2010;28:357–64.

    PubMed  PubMed Central  Google Scholar 

  119. Li H, Xie H, Liu W, Hu R, Huang B, Tan YF, et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest. 2009;119:3666–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Zhang JF, Fu WM, He ML, Xie WD, Lv Q, Wan G, et al. MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling. RNA Biol. 2011;8:829–38.

    Article  PubMed  CAS  Google Scholar 

  121. Herlofsen SR, Bryne JC, Høiby T, Wang L, Issner R, Zhang X, et al. Genome-wide map of quantified epigenetic changes during in vitro chondrogenic differentiation of primary human mesenchymal stem cells. BMC Genomics. 2013;14:105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Han J, Yang T, Gao J, Wu J, Qiu X, Fan Q, et al. Specific microRNA expression during chondrogenesis of human mesenchymal stem cells. Int J Mol Med. 2010;25:377–84.

    PubMed  CAS  Google Scholar 

  123. Yang B, Guo H, Zhang Y, Chen L, Ying D, Dong S. MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLoS One. 2011;6:e21679.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Guérit D, Brondello JM, Chuchana P, Philipot D, Toupet K, Bony C, et al. FOXO3A regulation by miRNA-29a controls chondrogenic differentiation of mesenchymal stem cells and cartilage formation. Stem Cells Dev. 2014;23:1195–205.

    Article  PubMed  CAS  Google Scholar 

  125. Guerit D, Philipot D, Chuchana P, Toupet K, Brondello JM, Mathieu M, et al. Sox9-regulated miRNA-574-3p inhibits chondrogenic differentiation of mesenchymal stem cells. PLoS One. 2013;8:e62582.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Musri MM, Corominola H, Casamitjana R, Gomis R, Párrizas M. Histone H3 lysine 4 dimethylation signals the transcriptional competence of the adiponectin promoter in preadipocytes. J Biol Chem. 2006;281:17180–8.

    Article  PubMed  CAS  Google Scholar 

  127. Hemming S, Cakouros D, Isenmann S, Cooper L, Menicanin D, Zannettino A, et al. EZH2 and KDM6A act as an epigenetic switch to regulate mesenchymal stem cell lineage specification. Stem Cells. 2014;32:802–15.

    Article  PubMed  CAS  Google Scholar 

  128. Li Q, Shi L, Gui B, Yu W, Wang J, Zhang D, et al. Binding of the JmjC demethylase JARID1B to LSD1/NuRD suppresses angiogenesis and metastasis in breast cancer cells by repressing chemokine CCL14. Cancer Res. 2011;71:6899–908.

    Article  PubMed  CAS  Google Scholar 

  129. Richter GH, Plehm S, Fasan A, Rössler S, Unland R, Bennani-Baiti IM, et al. EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation. Proc Natl Acad Sci U S A. 2009;106:5324–9.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Hu M, Sun XJ, Zhang YL, Kuang Y, Hu CQ, Wu WL, et al. Histone H3 lysine 36 methyltransferase Hypb/Setd2 is required for embryonic vascular remodeling. Proc Natl Acad Sci U S A. 2010;107:2956–61.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Berezin AE. Epigenetic mechanisms of endothelial progenitor cell dysfunction. J Clin Epigenet. 2016;2:24–6.

    Google Scholar 

  132. Ohtani K, Vlachojannis GJ, Koyanagi M, Boeckel JN, Urbich C, Farcas R, et al. Epigenetic regulation of endothelial lineage committed genes in pro-angiogenic hematopoietic and endothelial progenitor cells. Circ Res. 2011;109:1219–29.

    Article  PubMed  CAS  Google Scholar 

  133. Rössig L, Urbich C, Brühl T, Dernbach E, Heeschen C, Chavakis E, et al. Histone deacetylase activity is essential for the expression of HoxA9 and for endothelial commitment of progenitor cells. J Exp Med. 2005;201:1825–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Meng S, Cao JT, Zhang B, Zhou Q, Shen CX, Wang CQ. Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene spred-1. J Mol Cell Cardiol. 2012;53:64–72.

    Article  PubMed  CAS  Google Scholar 

  135. Meng S, Cao J, Zhang X, Fan Y, Fang L, Wang C, et al. Downregulation of microRNA-130a contributes to endothelial progenitor cell dysfunction in diabetic patients via its target Runx3. PLoS One. 2013;8:e68611.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Zhu S, Deng S, Ma Q, Zhang T, Jia C, Zhuo D, et al. MicroRNA-10A* and MicroRNA-21 modulate endothelial progenitor cell senescence via suppressing high-mobility group A2. Circ Res. 2013;112:152–64.

    Article  PubMed  CAS  Google Scholar 

  137. Singh T, Newman AB. Inflammatory markers in population studies of aging. Ageing Res Rev. 2011;10:319–29.

    Article  PubMed  CAS  Google Scholar 

  138. Michaud M, Balardy L, Moulis G, Gaudin C, Peyrot C, Vellas B, et al. Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc. 2013;14:877–82.

    Article  PubMed  Google Scholar 

  139. Deeks SG. HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med. 2011;62:141–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Jenny NS. Inflammation in aging: cause, effect, or both? Discov Med. 2012;13:451–60.

    PubMed  Google Scholar 

  141. Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S, et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity. 2006;24:801–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Schürch CM, Riether C, Ochsenbein AF. Cytotoxic CD8+ T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell Stem Cell. 2014;14:460–72.

    Article  PubMed  CAS  Google Scholar 

  143. Zhang Y, Jones M, McCabe A, Winslow GM, Avram D, MacNamara KC. MyD88 signaling in CD4 T cells promotes IFN-gamma production and hematopoietic progenitor cell expansion in response to intracellular bacterial infection. J Immunol. 2013;190:4725–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Zhao JL, Ma C, O’Connell RM, Mehta A, DiLoreto R, Heath JR, et al. Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell Stem Cell. 2014;14:445–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Pedersen BK. Anti-inflammation–just another word for anti-ageing? J Physiol. 2009;587:5515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Fleischman A, Shoelson SE, Bernier R, Goldfine AB. Salsalate improves glycemia and inflammatory parameters in obese young adults. Diabetes Care. 2008;31:289–94.

    Article  PubMed  CAS  Google Scholar 

  147. Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun. 2014;2:4172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Arai Y, Martin-Ruiz CM, Takayama M, Abe Y, Takebayashi T, Koyasu S, et al. Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine. 2015;2:1549–58.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Pitchford SC, Furze RC, Jones CP, Wengner AM, Rankin SM. Differential mobilization of subsets of progenitor cells from the bone marrow. Cell Stem Cell. 2009;4:62–72.

    Article  PubMed  CAS  Google Scholar 

  150. Galiano RD, Tepper OM, Pelo CR, Bhatt KA, Callaghan M, Bastidas N, et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol. 2004;164:1935–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol. 2002;3:687–94.

    Article  PubMed  CAS  Google Scholar 

  152. Shen GY, Park IH, Song YS, Joo HW, Lee Y, Shin J, et al. Local injection of granulocyte-colony stimulating factor accelerates wound healing in a rat excisional wound model. Tissue Eng Regen Med. 2016;13:297–303.

    Article  CAS  Google Scholar 

  153. Hong HS, Lee J, Lee E, Kwon YS, Lee E, Ahn W, et al. A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells. Nat Med. 2009;15:425–35.

    Article  PubMed  CAS  Google Scholar 

  154. Kim JH, Jung Y, Kim BS, Kim SH. Stem cell recruitment and angiogenesis of neuropeptide substance P coupled with self-assembling peptide nanofiber in a mouse hind limb ischemia model. Biomaterials. 2013;34:1657–68.

    Article  PubMed  CAS  Google Scholar 

  155. Hong HS, Son Y. Substance P ameliorates collagen II-induced arthritis in mice via suppression of the inflammatory response. Biochem Biophys Res Commun. 2014;453:179–84.

    Article  PubMed  CAS  Google Scholar 

  156. Jiang MH, Chung E, Chi GF, Ahn W, Lim JE, Hong HS, et al. Substance P induces M2-type macrophages after spinal cord injury. Neuroreport. 2012;23:786–92.

    Article  PubMed  CAS  Google Scholar 

  157. An YS, Lee E, Kang MH, Hong HS, Kim MR, Jang WS, et al. Substance P stimulates the recovery of bone marrow after the irradiation. J Cell Physiol. 2011;226:1204–13.

    Article  PubMed  CAS  Google Scholar 

  158. Um J, Yu J, Dubon MJ, Park K. Substance P and thiorphan synergically enhance angiogenesis in wound healing. Tissue Eng Regen Med. 2016;13:149–54.

    Article  CAS  Google Scholar 

  159. Jung N, Yu J, Um J, Dubon MJ, Park K. Substance P modulates properties of normal and diabetic dermal fibroblasts. Tissue Eng Regen Med. 2016;13:155–61.

    Article  CAS  Google Scholar 

  160. Hong HS, Kim S, Kim YH, Park JH, Jin Y, Son Y. Substance-P blocks degeneration of retina by stimulating migration and proliferation of retinal pigmented epithelial cells. Tissue Eng Regen Med. 2015;12:121–7.

    Article  CAS  Google Scholar 

  161. Ahn W, Jang J, Lim JE, Jung E, Son Y. Identifying a molecular and cellular phenotype of mesenchymal stem cells mobilized from Substance P in the peripheral blood. Tissue Eng Regen Med. 2015;12:128–42.

    Article  CAS  Google Scholar 

  162. Datar P, Srivastava S, Coutinho E, Govil G. Substance P: structure, function, and therapeutics. Curr Top Med Chem. 2004;4:75–103.

    Article  PubMed  CAS  Google Scholar 

  163. Ho WZ, Lai JP, Zhu XH, Uvaydova M, Douglas SD. Human monocytes and macrophages express substance P and neurokinin-1 receptor. J Immunol. 1997;159:5654–60.

    PubMed  CAS  Google Scholar 

  164. Rameshwar P. Substance P: a regulatory neuropeptide for hematopoiesis and immune functions. Clin Immunol Immunopathol. 1997;85:129–33.

    Article  PubMed  CAS  Google Scholar 

  165. Quartara L, Maggi CA. The tachykinin NK1 receptor. Part I: ligands and mechanisms of cellular activation. Neuropeptides. 1997;31:537–63.

    Article  PubMed  CAS  Google Scholar 

  166. Millward-Sadler SJ, Mackenzie A, Wright MO, Lee HS, Elliot K, Gerrard L, et al. Tachykinin expression in cartilage and function in human articular chondrocyte mechanotransduction. Arthritis Rheum. 2003;48:146–56.

    Article  PubMed  CAS  Google Scholar 

  167. Wang L, Zhao R, Shi X, Wei T, Halloran BP, Clark DJ, et al. Substance P stimulates bone marrow stromal cell osteogenic activity, osteoclast differentiation, and resorption activity in vitro. Bone. 2009;45:309–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Okada T, Hirayama Y, Kishi S, Miyayasu K, Hiroi J, Fujii T. Functional neurokinin NK-1 receptor expression in rat peritoneal mast cells. Inflamm Res. 1999;48:274–9.

    Article  PubMed  CAS  Google Scholar 

  169. Kohara H, Tajima S, Yamamoto M, Tabata Y. Angiogenesis induced by controlled release of neuropeptide substance P. Biomaterials. 2010;31:8617–25.

    Article  PubMed  CAS  Google Scholar 

  170. Rameshwar P, Joshi DD, Yadav P, Qian J, Gascon P, Chang VT, et al. Mimicry between neurokinin-1 and fibronectin may explain the transport and stability of increased substance P immunoreactivity in patients with bone marrow fibrosis. Blood. 2001;97:3025–31.

    Article  PubMed  CAS  Google Scholar 

  171. Jin Y, Hong HS, Son Y. Substance P enhances mesenchymal stem cells-mediated immune modulation. Cytokine. 2015;71:145–53.

    Article  PubMed  CAS  Google Scholar 

  172. Lim JE, Chung E, Son Y. A neuropeptide, Substance-P, directly induces tissue-repairing M2 like macrophages by activating the PI3K/Akt/mTOR pathway even in the presence of IFNγ. Sci Rep. 2017;7:9417.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants NRF2016M3A9B4917320 from the Korean Ministry of Science, ICT and Future Planning, and HI13C1479 from Korean Ministry of Health and Welfare to Dr. Y Son.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngsook Son.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest.

Ethical statement

There are no animal experiments carried out for the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, J.E., Son, Y. Endogenous Stem Cells in Homeostasis and Aging. Tissue Eng Regen Med 14, 679–698 (2017). https://doi.org/10.1007/s13770-017-0097-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-017-0097-3

Keywords

Navigation