Skip to main content
Log in

Substance P modulates properties of bone marrow-derived mesenchymal stem cells

  • Original Article
  • Cell Biology
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Bone marrow derived mesenchymal stem cells (MSCs) have self-renewal characteristics and are able to differentiate into various cell types. These cells can mobilize to peripheral tissues in order to participate in important biological processes such as wound healing. They are also able to regulate hematopoietic stem cells (HSCs) trafficking between the bone marrow and the periphery through the regulation of intercellular interactions and the expression of cytokines, such as SDF-1. Previous studies demonstrated that substance P (SP) induces the proliferation of MSCs in vitro and mediates the migration of MSCs to injury sites to promote healing. We found that SP increases CFU-F of the bone marrow total cells and up-regulates the osteogenic differentiation potential of MSCs without affecting their adipogenic differentiation potential. We also found that SP increases the mRNA levels of SDF-1 and N-cadherin in total bone marrow. Therefore, it is very likely that SP modulates the properties of MSCs linked to their therapeutic potential and their role in trafficking of stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HS Hong, YH Kim, Y Son, Perspectives on mesenchymal stem cells: tissue repair, immune modulation, and tumor homing, Arch Pharmacal Res, 35, 201 (2012).

    Article  CAS  Google Scholar 

  2. ZJ Liu, Y Zhuge, OC Velazquez, Trafficking and differentiation of mesenchymal stem cells, J Cell Biochem, 106, 984 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. S Mendez-Ferrer, TV Michurina, F Ferraro, et al., Mesenchymal and haematopoietic stem cells form a unique bone marrow niche, Nature, 466, 829 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Y Shi, G Hu, J Su, et al., Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair, Nature, 20, 510 (2010).

    CAS  Google Scholar 

  5. J Xu, D Wang, D Liu, et al., Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sjogren syndrome, Blood, 120, 3142 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. HS Hong, J Lee, E Lee, et al., A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells, Nat Med, 15, 425 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. AJ Friedenstein, RK Chailakhjan, KS Lalykina, The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells, Cell Tissue Kinet, 3, 393 (1970).

    CAS  PubMed  Google Scholar 

  8. AJ Friedenstein, II Shapiro-Piatetzky, KV Petrakova, Osteogenesis in transplants of bone marrow cells, J Embryol Exp Morphol, 16, 381 (1996).

    Google Scholar 

  9. M Owen, Marrow stromal stem cells, J Cell Sci Suppl, 10, 63 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. JE Dennis, A Merriam, A Awadallah, et al., A quadri-potential mesenchymal progenitor cell isolated from the marrow of an adult mouse, J Bone Miner Res, 14, 700 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. MF Pittenger, AM MacKa, SC Beck, et al., Multilineage potential of adult human mesenchymal stem cells, Science, 284, 143 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. E Theveneau, L Marchant, S Kuriyama, et al., Collective chemotaxis requires contact-dependent cell polarity, Dev Cell, 19, 39 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. E Theveneau, R Mayor, Can mesenchymal cells undergo collective cell migration? The case of the neural crest, Cell adhesion & migration, 5, 490 (2011).

    Article  Google Scholar 

  14. E Theveneau, R Mayor, Cadherins in collective cell migration of mesenchymal stem cells, Curr Opin Cell Biol, 24, 677 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. T Kitaori, H Ito, EM Schwarz, et al., Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model, Arthritis and Rheum, 60, 813 (2009).

    Article  CAS  Google Scholar 

  16. A Dar, O Kollet, T Lapidot, Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice, Exp Hematol, 34, 967 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. N Kim, SG Cho, Clinical applications of mesenchymal stem cells, Korean J Intern Med, 28, 387 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  18. P Lotfinegad, K Shamsasenjan, A Movassaghpour, et al., Immunomodulatory nature and site specific affinity of mesenchymal stem cells: a hope in cell therapy, Adv Pharm Bull, 4, 5 (2014).

    PubMed Central  PubMed  Google Scholar 

  19. S Ma, N Xie, W Li, et al., Immunobiology of mesenchymal stem cells, Cell Death Differ, 21, 216 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. N Fekete, MT Rojewsk, D Furst, et al., GMP-compliant isolation and large-scale expansion of bone marrow-derived MSC, PLoS One 7, e43255 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. MH Gastens, K Goltry, W Prohaska, et al., (2007). Good manufacturing practice-compliant expansion of marrow-derived stem and progenitor cells for cell therapy, Cell transplant, 16, 685 (2007).

    PubMed  Google Scholar 

  22. C Ikebe, K Suzuki, Mesenchymal Stem Cells for Regenerative Therapy: Optimization of Cell Preparation Protocols, Biomed Res Int, 2014, 951512 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  23. H Castro-Malaspina, RE Gay, G Resnick, et al., Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny, Blood, 56, 289 (1980).

    CAS  PubMed  Google Scholar 

  24. CG Bellows, SM Reimers, JN Heersche, Expression of mRNAs for type-I collagen, bone sialoprotein, osteocalcin, and osteopontin at different stages of osteoblastic differentiation and their regulation by 1,25 dihydroxyvitamin D3, Cell Tissue Res, 297, 249 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. H Kondo, T Ohyama, K Ohya, et al., Temporal changes of mRNA expression of matrix proteins and parathyroid hormone and parathyroid hormone-related protein (PTH/PTHrP) receptor in bone development, J Bone Miner Res, 12, 2089 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. L Wang, R Zhao, X Shi, et al., Substance P stimulates bone marrow stromal cell osteogenic activity, osteoclast differentiation, and resorption activity in vitro. Bone, 45, 309 (2009).

    CAS  Google Scholar 

  27. SC Offley, TZ Gu, T Wei, et al., Capsaicin-sensitive sensory neurons contribute to the maintenance of trabecular bone integrity, J Bone Miner Res, 20, 257 (2005).

    Article  PubMed  Google Scholar 

  28. Y Liu, L Wang, T Kikuiri, et al., Mesenchymal stem-cell based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α, Nat Med, 17, 1594 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. O Kollet, I Petit, J Kahn, et al., Human CD34(+)CXCR4(-) sorted cells harbor intracellular CXCR4, which can be functionally expressed and provide NOD/SCID repopulation, Blood, 100, 2778 (2012).

    Google Scholar 

  30. O Kollet, A Spiegel, A Peled, et al., Rapid and efficient homing of human CD34(+)CD38(-/low)CXCR4(+) stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2m(null) mice, Blood, 97, 3283 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. T Lapidot, Mechanism of human stem cell migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice. The role of SDF-1/CXCR4 interactions, Ann NY Acad, 938, 83 (2001).

    Article  CAS  Google Scholar 

  32. E Theveneau, B Steventon, E Scarpa, et al., Chase-and-run between adjacent cell populations promotes directional collective migration, Nat Cell Biol, 15, 763 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Sook Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubon, M.J., Byeon, Y., Jung, N. et al. Substance P modulates properties of bone marrow-derived mesenchymal stem cells. Tissue Eng Regen Med 11, 217–223 (2014). https://doi.org/10.1007/s13770-014-0012-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-014-0012-0

Key words

Navigation