Skip to main content

Advertisement

Log in

Matrigel uses in cell biology and for the identification of thymosin β4, a mediator of tissue regeneration

  • Review
  • Published:
Applied Biological Chemistry Submit manuscript

Abstract

The thin extracellular matrix that is found basally in epithelial and endothelial cells and around smooth muscle, peripheral nerves, and fat cells is known as the basement membrane. A murine tumor matrix extract, termed Matrigel, has provided an abundant source of basement membrane proteins (laminin, collagen IV, heparan sulfate, etc.). Matrigel gels at room temperature into a structure similar to the authentic matrix. Embryonic tissue explants, stem cells, and various cell types differentiate when cultured on Matrigel. Matrigel has been used in various in vitro assays for angiogenesis, cell invasion, spheroid formation, organoid formation from a single cell, etc. In vivo Matrigel improves/promotes tumor xenograft growth and is used to measure angiogenesis, improve heart and spinal cord repair, increase tissue transplant take, etc. Endothelial cells plated on top of Matrigel form capillary-like tubules. The gene for thymosin beta 4 was induced at 4 h after plating endothelial cells on Matrigel, and when the thymosin beta 4 protein was added exogenously to the culture, tubule formation was accelerated. Thymosin beta 4, a small 43 kDa protein present in all body fluids and cells, has multiple biological activities, including reducing inflammation, apoptosis, and cytotoxicity while increasing cell migration, stem cell recruitment and differentiation, and tissue repair. Thymosin beta 4 was subsequently found to promote angiogenesis in vivo and to improve dermal and ocular healing in experimental injury models. It has regenerative activity in animal models of traumatic brain injury, stroke, multiple sclerosis, heart attack, peripheral neuropathy, liver and kidney fibrosis, and hair growth. Clinical trials have demonstrated its efficacy for both stasis and pressure ulcers and for both dry eye and a rare ocular disease. This mini review will discuss the development of Matrigel and the discovery of thymosin beta 4 as a regenerative protein that is upregulated when endothelial cells are plated on Matrigel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Benton G, Arnaoutova I, George J, Kleinman HK, Koblinski J (2016) Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Discov Rev 79–80:3–18

    Google Scholar 

  2. Kleinman HK, McGarvey ML, Hassell JR, Star VL, Cannon FB, Laurie GW, Martin GR (1986) Basement membrane complexes with biological activity. Biochemistry 25:312–318

    Article  CAS  Google Scholar 

  3. Benton G, Kleinman HK, George J, Arnaoutova I (2012) Multiple uses of basement membrane-like matrix (BME/Matrigel) in vitro and in vivo with tumor cells. Int J Cancer 128:1751–1757

    Article  Google Scholar 

  4. Arnaoutova I, George J, Kleinman HK, Benton G (2012) Basement membrane (BME) has multiple uses with stem cells. Stem Cell Rep Rev 8:163–169

    Article  CAS  Google Scholar 

  5. Kubota Y, Kleinman HK, Martin GR, Lawley TJ (1988) Role of laminin and basement membrane in the differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107:1589–1597

    Article  CAS  Google Scholar 

  6. Benton G, George J, Kleinman HK, Arnaoutova (2009) Advancing science and technology via 3D culture on basement membrane matrix. J Cell Physiol 221:18–25

    Article  CAS  Google Scholar 

  7. Themistoceous GS, Katapodois H, Sourla A, Lembessis P, Doillon CJ, Soucacos PN, Koutsilieris M (2004) Three-dimensional type I collagen cell culture systems for the study of bone pathophysiology. In Vivo 18:687–696

    Google Scholar 

  8. Kleinman HK, Klebe RJ, Martin GR (1981) Role of collagenous matrices in the adhesion and growth of cell. J Cell Biol 88:473–485

    Article  CAS  Google Scholar 

  9. Hoffman MO, Kibbey MC, Letterio JJ, Kleinman HK (1996) Role of laminin-1 and TGF-beta 3 in acinar differentiation of a human submandibular gland cell line (HSG). J Cell Sci 109:2013–2021

    CAS  PubMed  Google Scholar 

  10. Pasquier J, Gupta R, Bioult D, Hoarau-Vechot J, Courjaret R, Machaca K, Al Suwaidi J, Stanley EG, Fafii EG, Da Elliott, Abi Khalil C, Rafii A (2017) Coculturing with endothelial cells promotes in vitro maturation and electrical coupling of human embryonic stem cell-derive cardiomyocytes. J Heart Lung Transplant 36:684–693

    Article  Google Scholar 

  11. Bissell MJ, Ran TG (1999) Regulation of functional cytodifferentiation and histogenesis in mammary epithelial cells: role of the extracellular matrix. Environ Health Perspect 80:61–70

    Article  Google Scholar 

  12. Gho YS, Kleinman HK, Sosne G (1999) Angiogenic activity of human soluble intercellular adhesion molecule-1. Cancer Res 59:5128–5132

    CAS  PubMed  Google Scholar 

  13. Carey DJ, Todd MS, Rafferty CM (1986) Schwann cell myelination: induction by exogenous basement membrane-like extracellular matrix. J Cell Biol 102:2254–2263

    Article  CAS  Google Scholar 

  14. Hauser BR, Hoffman MP (2015) Regulatory mechanisms driving salivary gland organogenesis. Curr Top Dev Biol 115:111–130

    Article  Google Scholar 

  15. Barkan D, Kleinman HK, Simmons JL, Asmussen H, Kamaraju AK, Hoenorhoff M, Liu Z, Coste SV, Cho EH, Lockett SJ, Khanna C, Chambers AF, Green J (2008) Transition from tumor dormancy to metastatic growth is dependent on the extracellular matrix and cytoskeletal dynamics. Can Res 68:6241–6250

    Article  CAS  Google Scholar 

  16. Albini A, Iwamoto Y, Kleinman HK, Martin GR, Kozlowski JM, McEwan RN (1987) A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47:3239–3245

    CAS  PubMed  Google Scholar 

  17. Albini A, Noonan DM (2010) The ‘chemoinvasion’ assay, 25 years and still going strong: the use of reconstituted basement membranes to study cell invasion and angiogenesis. Curr Opin Cell Biol 22:677–689

    Article  CAS  Google Scholar 

  18. Benton G, DeGray G, Kleinman HK, George J, Arnaoutova I (2015) In vitro microtumors provide a physiological predictive tool for breast cancer therapeutic screening. Plos One 10(4):e0123312

    Article  Google Scholar 

  19. Fridman R, Kibbey MC, Royce LS, Zain M, Sweeney TM, Jicha DL, Yannelli JR, Martin GR, Kleinman HK (1991) Basement membrane (matrigel) enhances both the incidence and growth of subcutaneously injected human and murine cells. J Natl Cancer Inst 83:769–774

    Article  CAS  Google Scholar 

  20. Fridman R, Benton G, Arnaoutova I, Kleinman HK, Bonfil D (2012) Increased initiation and growth of tumor cell lines, cancer stem cells, and biopsy material in mice using basement membrane proteins (Cultrex/Matrigel) coinjection. Nat Protoc 17:1138–1144

    Article  Google Scholar 

  21. Cristobal A, van der Toorm HW, van der Wetering M, Clevers H, Heck A, Mohammed S (2107) Personalized proteome profiles of healthy and tumor colon organoids reveal both individual diversity and basic features of colorectal cancer. Cell Rep 18:263–274

    Article  Google Scholar 

  22. Arnaoutova I, Kleinman HK (2010) In vitro angiogenesis: endothelial cell tube formation on a gelled basement membrane extract. Nat Protoc 5:628–635

    Article  CAS  Google Scholar 

  23. Arnaoutova I, George J, Kleinman HK, Benton G (2009) The endothelial cell tube formation assay on basement membrane turns 20. Angiogenesis 12:267–274

    Article  Google Scholar 

  24. Lugassy C, Wadehra M, Li X, Corselli M, Akhavan D, Binder SW, Péault B, Cochran AJ, Mischel PS, Kleinman HK, Barnhill RL (2013) Pilot study on “pericytic mimicry” and potential embryonic/stem cell properties of angiotropic melanoma cells interacting with the abluminal vascular surface. Cancer Microenviron 6:19–29

    Article  CAS  Google Scholar 

  25. Zadran S, McMickle R, Shackelford D, Kleinman H, Barnhill R, Lugassy C (2013) Monitoring extra-vascular migratory metastasis (EVMM) of migrating cancer cells using an in vitro co-culture system. Protoc Exch 2013:2867

    Google Scholar 

  26. Grant DS, Kinsella JL, Kibbey MC, LaFlamme S, Burbelo PD, Goldstein AL, Kleinman HK (1995) Matrigel induces thymosin beta4 gene in differentiating endothelial cells. J Cell Sci 108:3685–3694

    CAS  PubMed  Google Scholar 

  27. Goldstein AL, Hannappel E, Kleinman HK (2005) Thymosin β4: actin-sequestering protein moonlights to repair injured tissues. Trends Mol Med 11:421–429 (invited)

    Article  CAS  Google Scholar 

  28. Goldstein A, Kleinman HK (2015) Advances in the basic and clinical applications of thymosin beta 4. Expert Opin Biol Ther 15(Suppl 1):S139–S145. https://doi.org/10.1517/14712598.2015.1011617

    Article  CAS  PubMed  Google Scholar 

  29. Kleinman HK, Sosne G (2016) Thymosin beta 4 promotes dermal healing. Vit Hormone 102:251–275

    Article  CAS  Google Scholar 

  30. Ehrlich HP, Hazard SW 3rd (2010) Thymosin beta 4 enhance repair by organizing connective tissue and preventing the appearance of myofibroblasts. Ann NY Acad Sci 1194:118–124

    Article  CAS  Google Scholar 

  31. Kim S, Kwon J (2017) Thymosin beta 4 has a major role in dermal burn wound healing that involves actin cytoskeletal remodeling. J Tissue Eng Regen Med 11:1262–1273

    Article  CAS  Google Scholar 

  32. Lin Y, Lin B, Lin D, Huang G, Cao B (2015) Effect of thymosin beta 4 on the survival of random skin flaps in rats. J Reconstr Microsurg 31:464–470

    Article  CAS  Google Scholar 

  33. Sosne G, Chan CC, Thai K, Kennedy M, Szliter EA, Hazlett LD, Kleinman HK (2001) Thymosin beta 4 promotes corneal wound healing and modulates inflammatory mediators in vivo. Exp Eye Res 72:605–608

    Article  CAS  Google Scholar 

  34. Sosne G, Szliter EA, Barrett R, Kernacki KA, Kleinman HK, Hazlett LD (2002) Thymosin beta 4 promotes corneal wound healing and decreases inflammation in vivo following alkali injury. Exp Eye Res 74:293–299

    Article  CAS  Google Scholar 

  35. Kim CE, Kleinman HK, Sosne G, Ousler GW, Kim K, Kang S, Yang J (2018) RGN-259 (thymosin beta 4) promotes clinically important dry eye efficacies in comparison with prescription drugs in a dry eye model. Sci Rep 8(1):10500. https://doi.org/10.1038/s41598-018-28861-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Treadwell T, Kleinman HK, Crockford D, Hardy MA, Guarnera T, Goldstein A (2012) The regenerative peptide thymosin beta 4 accelerates the rate of healing of pressure and venous stasis ulcers: analysis of two phase 2 randomized clinical trials. NY Acad Sci 1270:37–44

    Article  CAS  Google Scholar 

  37. Sosne G, Dunn SP, Kim C (2015) Thymosin beta 4 significantly improves the signs and symptoms of severe dry eye in a phase 2 randomized trial. Cornea 34:491–496

    Article  Google Scholar 

  38. Dunn SP, Heidemann DG, Chow CY, Crockford D, Turjman N, Angel J, Allan CB, Sosne G (2010) Treatment of chronic nonhealing neurotrophic corneal epithelial defects with thymosin beta 4. Arch Ophthalmol 128:636–638

    Article  Google Scholar 

  39. Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386

    Article  CAS  Google Scholar 

  40. Garcez PP, Loiola EC, Madeiro da Costa R, Higa LM, Trindade P, Delvecchio R, Nascimento JM, Brindeiro R, Tanuri A, Rehen SK (2016) Zika virus impairs growth in human neurospheres and brain organoids. Science 352(6287):816–818

    Article  CAS  Google Scholar 

  41. Hinkel R, El-Aouni C, Olson T, Horstkotte J, Mayer S, Müller S, Willhauck M, Spitzweg C, Gildehaus FJ, Münzing W, Hannappel E, Bock-Marquette I, DiMaio JM, Hatzopoulos AK, Boekstegers P, Kupatt C (2008) Thymosin beta 4 is an essential paracrine factor of embryonic endothelial progenitor cell-mediated cardioprotection. Circulation 117:2232–2240

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The early studies on Matrigel and some of the preclinical work on thymosin beta 4 were performed by HKK and were carried out at the National Institutes of Health (NIH) with support from NIH, Bethesda, MD, USA. The authors thank the members of GTreeBNT for providing information on their planned clinical trials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hynda K. Kleinman.

Ethics declarations

Conflict of interest

Hynda K. Kleinman, and Kyeongsoon Kim consult for GtreeBNT. Hunhee Kang is an employee of GtreeBNT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleinman, H.K., Kim, K. & Kang, H. Matrigel uses in cell biology and for the identification of thymosin β4, a mediator of tissue regeneration. Appl Biol Chem 61, 703–708 (2018). https://doi.org/10.1007/s13765-018-0400-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-018-0400-6

Keywords

Navigation