Phosphate removal from aqueous solutions using natural and thermic treated dolomites: equilibrium, kinetic, and thermodynamic

Abstract

This study aims to evaluate the effect of natural and calcined dolomites on phosphate removal in aqueous solution. The solids were characterized and the effects of pH, contact time, and solid concentration on the removal process were analyzed. Dolomite showed an enhanced surface property induced by the thermal treatment at 800 °C, which increased the surface area from 2.350 to 6.229 m2 g−1, calcium and magnesium carbonates were converted to their respective oxides, and the material showed better sorption proprieties for phosphate removal. The adsorption process showed 70–90% of phosphate removal using natural and calcined dolomites, respectively, under the experimental conditions of pH 11, 60 min contact time, and 10 mg L−1 initial phosphate concentration. Pseudo-second-order and Langmuir/Redlich–Peterson were the mathematical models that best described the kinetic and equilibrium mechanisms for phosphate removal. The thermodynamic parameters suggest a spontaneous, endothermic, and random process at the solid/solution interface, confirming a favorable adsorption system. The removal process was controlled by chemisorption phenomena. In that context, natural dolomite can be modified to enhance the surface property induced by the thermal treatment making it a more promising material for use in immobilization of anion pollutants such as phosphate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Albadarin AB, Mangwandi C, Ala’aWalkerAllenAhmad HGMSJMN (2012) Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chem Eng J 179:193–202. https://doi.org/10.1016/j.cej.2011.10.080

    CAS  Article  Google Scholar 

  2. Beqqour D et al (2019) Enhancement of microfiltration performances of pozzolan membrane by incorporation of micronized phosphate and its application for industrial wastewater treatment. J Environ Chem Eng 7(2):102981. https://doi.org/10.1016/j.jece.2019.102981

    CAS  Article  Google Scholar 

  3. Caspers H (1985) Methods of seawater analysis. Wiley, New York

    Google Scholar 

  4. Chen L, Li Y, Sun Y, Chen Y, Qian J (2019) La (OH) 3 loaded magnetic mesoporous nanospheres with highly efficient phosphate removal properties and superior pH stability. Chem Eng J 360:342–348. https://doi.org/10.1016/j.cej.2018.11.234

    CAS  Article  Google Scholar 

  5. Chen TH, Wang JZ, Wang J, Xie JJ, Zhu CZ, Zhan XM (2015) Phosphorus removal from aqueous solutions containing low concentration of phosphate using pyrite calcinate sorbent. Int J Environ Sci Technol 12(3):885–892. https://doi.org/10.1007/s13762-013-0450-6

    CAS  Article  Google Scholar 

  6. Correia LM, de Sousa CN, Novaes DS, Cavalcante CL Jr, Cecilia JA, Rodríguez-Castellón E, Vieira RS (2015) Characterization and application of dolomite as catalytic precursor for canola and sunflower oils for biodiesel production. Chem Eng J 269:35–43. https://doi.org/10.1016/j.cej.2015.01.097

    CAS  Article  Google Scholar 

  7. García AC, Latifi M, Chaouki J (2020) Kinetics of calcination of natural carbonate minerals. Miner Eng 150:106279. https://doi.org/10.1016/j.mineng.2020.106279

    CAS  Article  Google Scholar 

  8. Giles CH, Smith D, Huitson A (1974) A general treatment and classification of the solute adsorption isotherm I Theoretical. J Colloid Interface Sci 47(3):755–765. https://doi.org/10.1016/00219797(74)90252-5

    CAS  Article  Google Scholar 

  9. Gimbert F, Morin-Crini N, Renault F, Badot PM, Crini G (2008) Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: error analysis. J Hazard Mater 157(1):34–46. https://doi.org/10.1016/j.jhazmat.2007.12.072

    CAS  Article  Google Scholar 

  10. Guaya D, Valderrama C, Farran A, Armijos C, Cortina JL (2015) Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite. Chem Eng J 271:204–213. https://doi.org/10.1016/j.cej.2015.03.003

    CAS  Article  Google Scholar 

  11. Jung KW, Hwang MJ, Ahn KH, Ok YS (2015) Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media. Int J Environ Sci Technol 12(10):3363–3372. https://doi.org/10.1007/s13762-015-0766-5

    CAS  Article  Google Scholar 

  12. Karaca S, Gürses A, Ejder M, Açıkyıldız M (2004) Kinetic modeling of liquid-phase adsorption of phosphate on dolomite. J Colloid Interface Sci 277(2):257–263. https://doi.org/10.1016/j.jcis.2004.04.042

    CAS  Article  Google Scholar 

  13. Karaca S, Gürses A, Ejder M, Açıkyıldız M (2006) Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite. J Hazard Mater 128(2–3):273–279. https://doi.org/10.1016/j.jhazmat.2005.08.003

    CAS  Article  Google Scholar 

  14. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403. https://doi.org/10.1021/ja02242a004

    CAS  Article  Google Scholar 

  15. Lavat AE, Grasselli MC (2015) Synthesis and characterization of ceramic materials based on the system MgO–CaO–TiO2 from dolomite. Proc Mater Sci 8:162–171. https://doi.org/10.1016/j.mspro.2015.04.060

    CAS  Article  Google Scholar 

  16. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048

    CAS  Article  Google Scholar 

  17. Mangwandi C, Albadarin AB, Glocheux Y, Walker GM (2014) Removal of ortho-phosphate from aqueous solution by adsorption onto dolomite. J Environ Chem Eng 2(2):1123–1130. https://doi.org/10.1016/j.jece.2014.04.010

    CAS  Article  Google Scholar 

  18. Marouf R, Marouf-Khelifa K, Schott J, Khelifa A (2009) Zeta potential study of thermally treated dolomite samples in electrolyte solutions. Micropor Mesopor Mat 122(1–3):99–104. https://doi.org/10.1016/j.micromeso.2009.02.021

    CAS  Article  Google Scholar 

  19. Morse G, Brett S, Guy J, Lester J (1998) Review: phosphorus removal and recovery technologies. Sci Total Environ 212(1):69–81

    CAS  Article  Google Scholar 

  20. Novais SV, Zenero MDO, Barreto MSC, Montes CR, Cerri CEP (2018) Phosphorus removal from eutrophic water using modified biochar. Sci Total Environ 633:825–835. https://doi.org/10.1016/j.scitotenv.2018.03.246

    CAS  Article  Google Scholar 

  21. Rad LR, Haririan I, Divsar F (2015) Comparison of adsorption and photo-Fenton processes for phenol and paracetamol removing from aqueous solutions: single and binary system. Spectrochim Acta A 136:423–428. https://doi.org/10.1016/j.saa.2014.09.052

    CAS  Article  Google Scholar 

  22. Ren Z, Shao L, Zhang G (2012) Adsorption of phosphate from aqueous solution using an iron–zirconium binary oxide sorbent. Water Air Soil Pollut 223(7):4221–4231. https://doi.org/10.1007/s11270-012-1186-5

    CAS  Article  Google Scholar 

  23. Riahi K, Chaabane S, Ben TB (2017) A kinetic modeling study of phosphate adsorption onto Phoenix dactylifera L. date palm fibers in batch mode. J Saudi Chem Soc 21:S143–S152. https://doi.org/10.1016/j.jscs.2013.11.007

    CAS  Article  Google Scholar 

  24. Ruthrof KX, Steel E, Misra S, McComb J, O’Hara G, Hardy GESJ, Howieson J (2018) Transitioning from phosphate mining to agriculture: responses to urea and slow release fertilizers for Sorghum bicolor. Sci Total Environ 625:1–7. https://doi.org/10.1016/j.scitotenv.2017.12.104

    CAS  Article  Google Scholar 

  25. Selim AQ, Sellaoui L, Mobarak M (2019) Statistical physics modeling of phosphate adsorption onto chemically modified carbonaceous clay. J Mol Liq 279:94–107. https://doi.org/10.1016/j.molliq.2019.01.100

    CAS  Article  Google Scholar 

  26. Wang K, Han D, Zhao P, Hu X, Yin Z, Wu D (2015) Role of MgxCa1–xCO3 on the physical–chemical properties and cyclic CO2 capture performance of dolomite by two-step calcination. Thermochim Acta 614:199–206. https://doi.org/10.1016/j.tca.2015.06.033

    CAS  Article  Google Scholar 

  27. Wu FC, Liu BL, Wu KT, Tseng RL (2010) A new linear form analysis of Redlich–Peterson isotherm equation for the adsorptions of dyes. Chem Eng J 162(1):21–27. https://doi.org/10.1016/j.cej.2010.03.006

    CAS  Article  Google Scholar 

  28. Xu Y et al (2019) Removal behaviors and mechanisms of orthophosphate and pyrophosphate by calcined dolomite with ferric chloride assistance. Chemosphere 235:1015–1021. https://doi.org/10.1016/j.chemosphere.2019.07.018

    CAS  Article  Google Scholar 

  29. Yoon SY, Lee CG, Park JA, Kim JH, Kim SB, Lee SH, Choi JW (2014) Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles. Chem Eng J 236:341–347. https://doi.org/10.1016/j.cej.2013.09.053

    CAS  Article  Google Scholar 

  30. Yu J, Liang W, Wang L, Li F, Zou Y, Wang H (2015) Phosphate removal from domestic wastewater using thermally modified steel slag. J Environ Sci 31:81–88. https://doi.org/10.1016/j.jes.2014.12.007

    CAS  Article  Google Scholar 

  31. Zeng L, Li X, Liu J (2004) Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Wat Res 38(5):1318–1326. https://doi.org/10.1016/j.watres.2003.12.009

    CAS  Article  Google Scholar 

  32. Zhou C, Rosén C, Engvall K (2020) Fragmentation of dolomite bed material at elevated temperature in the presence of H2O & CO2: implications for fluidized bed gasification. Fuel 260:116340. https://doi.org/10.1016/j.fuel.2019.116340

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Council of Technological and Scientific Development (CNPq) and the Coordination for the Improvement of Higher Education Personnel (CAPES) of the Brazilian Government for the financial support granted to carry out this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to I.V. Jurado.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication.

Additional information

Editorial responsibility: Samareh Mirkia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jurado, I., Paese, G., Schneider, I.H. et al. Phosphate removal from aqueous solutions using natural and thermic treated dolomites: equilibrium, kinetic, and thermodynamic. Int. J. Environ. Sci. Technol. (2021). https://doi.org/10.1007/s13762-021-03197-2

Download citation

Keywords

  • Dolomite
  • Eutrophication
  • Phosphate
  • Sorption
  • Wastewater treatment