Influence of typical electrolytes on electrooxidation of bio-refractory reactive dye

Abstract

Electrochemical oxidation is a promising alternative for the degradation of reactive dyestuffs in residual dyeing liquid, which contains organic dyes, as well as salts such as sodium chloride and sodium sulfate. In this work, three kinds of salts, Na2SO4, NaCl and FeSO4, were selected to study the influence of electrolytes on the electrochemical oxidation of recalcitrant reactive red X-3B, using graphite cathode and dimensionally stable anode or graphite anode. The removals of color and chemical oxygen demand have been evaluated. Color removals were 99.97% and 99.84% with graphite anode and dimensionally stable anode in Na2SO4 and NaCl electrolyte. The corresponding chemical oxygen demand removals were 93.60% and 100%. In contrast, the maximum color and chemical oxygen demand removals were 97.32% and 68.76% in FeSO4 electrolyte. It was found that a combination of NaCl and FeSO4 achieved complete oxygen demand removal for both graphite anode and dimensionally stable anode. During the electrochemical oxidation process, anode and electrolyte exhibited a great effect on pH variations. Based on the cyclic voltammetry and active oxidative species investigations, the oxidation of reactive red X-3B was attributed to indirect oxidation of active chlorine and reactive oxygen species.

This is a preview of subscription content, access via your institution.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Abbreviations

DSA:

Dimensionally stable anode

COD:

Chemical oxygen demand

BDD:

Boron-doped diamond

SHE:

Standard hydrogen electrode

References

  1. Abdel-Aziz MH, Nirdosh I, Sedahmed GH (2018) Liquid–solid mass transfer behaviour of heterogeneous reactor made of a rotating tubular packed bed of spheres. Int J Heat Mass Transf 126:1129–1137. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.050

    CAS  Article  Google Scholar 

  2. An H, Cui H, Zhang W, Zhai J, Qian Y, Xie X, Li Q (2012) Fabrication and electrochemical treatment application of a microstructured TiO2-NTs/Sb–SnO2/PbO2 anode in the degradation of CI Reactive Blue 194 (RB 194). Chem Eng J 209:86–93. https://doi.org/10.1016/j.cej.2012.07.089

    CAS  Article  Google Scholar 

  3. Babaei-Sati R, Basiri Parsa J (2017) Electrogeneration of H2O2 using graphite cathode modified with electrochemically synthesized polypyrrole/MWCNT nanocomposite for electro-Fenton process. J Ind Eng Chem 52:270–276. https://doi.org/10.1016/j.jiec.2017.03.056

    CAS  Article  Google Scholar 

  4. Bengani-Lutz P, Zaf RD, Culfaz-Emecen PZ, Asatekin A (2017) Extremely fouling resistant zwitterionic copolymer membranes with ~ 1nm pore size for treating municipal, oily and textile wastewater streams. J Membr Sci 543:184–194. https://doi.org/10.1016/j.memsci.2017.08.058

    CAS  Article  Google Scholar 

  5. Bensalah N, Louhichi B, Abdel-Wahab A (2012) Electrochemical oxidation of succinic acid in aqueous solutions using boron doped diamond anodes. Int J Environ Sci Technol 9:135–143. https://doi.org/10.1007/s13762-011-0007-5

    CAS  Article  Google Scholar 

  6. Bravo-Yumi N, Espinoza-Montero P, Picos-Benítez A, Navarro-Mendoza R, Brillas E, Peralta-Hernández JM (2020) Synthesis and characterization of Sb2O5-doped Ti/SnO2-IrO2 anodes toward efficient degradation tannery dyes by in situ generated oxidizing species. Electrochim Acta 358:136904. https://doi.org/10.1016/j.electacta.2020.136904

    CAS  Article  Google Scholar 

  7. Burkinshaw SM, Salihu G (2018) The role of auxiliaries in the immersion dyeing of textile fibres: part 10 the influence of inorganic electrolyte on the wash-off of reactive dyes. Dyes Pigm 149:652–661. https://doi.org/10.1016/j.dyepig.2017.11.034

    CAS  Article  Google Scholar 

  8. Carneiro JF, Aquino JM, Silva AJ, Barreiro JC, Cass QB, Rocha-Filho RC (2018) The effect of the supporting electrolyte on the electrooxidation of enrofloxacin using a flow cell with a BDD anode: kinetics and follow-up of oxidation intermediates and antimicrobial activity. Chemosphere 206:674–681. https://doi.org/10.1016/j.chemosphere.2018.05.031

    CAS  Article  Google Scholar 

  9. Çeçen F, Gül G (2020) Biodegradation of five pharmaceuticals: estimation by predictive models and comparison with activated sludge data. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-020-02820-y

    Article  Google Scholar 

  10. Davarpanah A, Zarei M, Valizadeh K, Mirshekari B (2019) CFD design and simulation of ethylene dichloride (EDC) thermal cracking reactor. Energy Sourc Part A Recov Util Environ Eff 41:1573–1587. https://doi.org/10.1080/15567036.2018.1549133

    CAS  Article  Google Scholar 

  11. Dotto J, Fagundes-Klen MR, Veit MT, Palácio SM, Bergamasco R (2019) Performance of different coagulants in the coagulation/flocculation process of textile wastewater. J Clea Prod 208:656–665. https://doi.org/10.1016/j.jclepro.2018.10.112

    CAS  Article  Google Scholar 

  12. Escalona-Durán F, Ribeiro da Silva D, Martínez-Huitle CA, Villegas-Guzman P (2020) The synergic persulfate-sodium dodecyl sulfate effect during the electro-oxidation of caffeine using active and non-active anodes. Chemosphere 253:126599. https://doi.org/10.1016/j.chemosphere.2020.126599

    CAS  Article  Google Scholar 

  13. Escalona-Durán F, Villegas-Guzman P, dos Santos EV, da Silva DR, Martínez-Huitle CA (2019) Intensification of petroleum elimination in the presence of a surfactant using anodic electrochemical treatment with BDD anode. J Electroanal Chem 832:453–458. https://doi.org/10.1016/j.jelechem.2018.11.045

    CAS  Article  Google Scholar 

  14. Guo S, Zhu X, Yang C, Zhang J, Zhang F, Li X (2019) Synthesis and characterization of L-arginine/Fe3O4 adsorbent for the removal of methyl orange from aqueous solutions. Ionics 25:1323–1330. https://doi.org/10.1007/s11581-019-02844-6

    CAS  Article  Google Scholar 

  15. Huang L, Li D, Liu J, Yang L, Dai C, Ren N, Feng Y (2021) CFD simulation of mass transfer in electrochemical reactor with mesh cathode for higher phenol degradation. Chemosphere 262:127626. https://doi.org/10.1016/j.chemosphere.2020.127626

    CAS  Article  Google Scholar 

  16. Jager D, Kupka D, Vaclavikova M, Ivanicova L, Gallios G (2018) Degradation of reactive black 5 by electrochemical oxidation. Chemosphere 190:405–416. https://doi.org/10.1016/j.chemosphere.2017.09.126

    CAS  Article  Google Scholar 

  17. Kaur P, Kushwaha JP, Sangal VK (2018) Electrocatalytic oxidative treatment of real textile wastewater in continuous reactor: degradation pathway and disposability study. J Hazard Mater 346:242–252. https://doi.org/10.1016/j.jhazmat.2017.12.044

    CAS  Article  Google Scholar 

  18. Kumar G, Huy M, Bakonyi P, Bélafi-Bakó K, Kim S-H (2018) Evaluation of gradual adaptation of mixed microalgae consortia cultivation using textile wastewater via fed batch operation. Biotechnol Rep 20:e00289. https://doi.org/10.1016/j.btre.2018.e00289

    Article  Google Scholar 

  19. Leal TW, Lourenço LA, Scheibe AS, de Souza SMAGU, de Souza AAU (2018) Textile wastewater treatment using low-cost adsorbent aiming the water reuse in dyeing process. J Environ Chem Eng 6:2705–2712. https://doi.org/10.1016/j.jece.2018.04.008

    CAS  Article  Google Scholar 

  20. Li D, Sun T, Wang L, Wang N (2018) Enhanced electro-catalytic generation of hydrogen peroxide and hydroxyl radical for degradation of phenol wastewater using MnO2/Nano-G|Foam-Ni/Pd composite cathode. Electrochim Acta 282:416–426. https://doi.org/10.1016/j.electacta.2018.06.075

    CAS  Article  Google Scholar 

  21. Liu N, Wu Y (2019) Removal of methylene blue by electrocoagulation: a study of the effect of operational parameters and mechanism. Ionics 25:3953–3960. https://doi.org/10.1007/s11581-019-02915-8

    CAS  Article  Google Scholar 

  22. Manojlović D et al (2020) Efficiency of homely synthesized magnetite: carbon composite anode toward decolorization of reactive textile dyes. Int J Environ Sci Technol 17:2455–2462. https://doi.org/10.1007/s13762-020-02654-8

    CAS  Article  Google Scholar 

  23. Moreira FC, Boaventura RAR, Brillas E, Vilar VJP (2017) Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl Catal B 202:217–261. https://doi.org/10.1016/j.apcatb.2016.08.037

    CAS  Article  Google Scholar 

  24. Moreno-Palacios AV, Palma-Goyes RE, Vazquez-Arenas J, Torres-Palma RA (2019) Bench-scale reactor for Cefadroxil oxidation and elimination of its antibiotic activity using electro-generated active chlorine. J Environ Chem Eng 7:103173. https://doi.org/10.1016/j.jece.2019.103173

    CAS  Article  Google Scholar 

  25. Nidheesh PV, Gandhimathi R, Sanjini NS (2014) NaHCO3 enhanced Rhodamine B removal from aqueous solution by graphite–graphite electro Fenton system. Sep Purif Technol 132:568–576. https://doi.org/10.1016/j.seppur.2014.06.009

    CAS  Article  Google Scholar 

  26. Pieczyńska A, Ossowski T, Bogdanowicz R, Siedlecka E (2019) Electrochemical degradation of textile dyes in a flow reactor: effect of operating conditions and dyes chemical structure. Int J Environ Sci Technol 16:929–942. https://doi.org/10.1007/s13762-018-1704-0

    CAS  Article  Google Scholar 

  27. Radi MA, Nasirizadeh N, Mirjalili M, Rohani Moghadam M (2019) Ultrasound-assisted electrochemical decolorization of anthraquinone dye CI Reactive Blue 49, its optimization and synergic effect: a comparative study. Int J Environ Sci Technol 16:2455–2464. https://doi.org/10.1007/s13762-017-1638-y

    CAS  Article  Google Scholar 

  28. Rajkumar D, Kim JG (2006) Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment. J Hazard Mater 136:203–212. https://doi.org/10.1016/j.jhazmat.2005.11.096

    CAS  Article  Google Scholar 

  29. Roozbahani MM, Nassiri P, Shalkouhi PJ (2009) Risk assessment of workers exposed to noise pollution in a textile plant International. J Environ Sci Technol 6:591–596. https://doi.org/10.1007/BF03326099

    Article  Google Scholar 

  30. Rueffer M, Bejan D, Bunce NJ (2011) Graphite: an active or an inactive anode? Electrochim Acta 56:2246–2253. https://doi.org/10.1016/j.electacta.2010.11.071

    CAS  Article  Google Scholar 

  31. Salazar R, Ureta-Zañartu MS, González-Vargas C, Brito CdN, Martinez-Huitle CA (2018) Electrochemical degradation of industrial textile dye disperse yellow 3: Role of electrocatalytic material and experimental conditions on the catalytic production of oxidants and oxidation pathway. Chemosphere 198:21–29. https://doi.org/10.1016/j.chemosphere.2017.12.092

    CAS  Article  Google Scholar 

  32. Sen SK, Patra P, Das CR, Raut S, Raut S (2019) Pilot-scale evaluation of bio-decolorization and biodegradation of reactive textile wastewater: an impact on its use in irrigation of wheat crop. Water Resour Ind 21:100106. https://doi.org/10.1016/j.wri.2019.100106

    Article  Google Scholar 

  33. Soni BD, Ruparelia JP (2013) Decolourization and mineralization of reactive black-5 with transition metal oxide coated electrodes by electrochemical oxidation. Procedia Eng 51:335–341. https://doi.org/10.1016/j.proeng.2013.01.046

    CAS  Article  Google Scholar 

  34. Valizadeh K, Farahbakhsh S, Bateni A, Zargarian A, Davarpanah A, Alizadeh A, Zarei M (2020) A parametric study to simulate the non-Newtonian turbulent flow in spiral tubes. Energy Sci Eng 8:134–149. https://doi.org/10.1002/ese3.514

    CAS  Article  Google Scholar 

  35. Verma AK (2017) Treatment of textile wastewaters by electrocoagulation employing Fe–Al composite electrode. J Water Process Eng 20:168–172. https://doi.org/10.1016/j.jwpe.2017.11.001

    Article  Google Scholar 

  36. Wang J, Zhang T, Mei Y, Pan B (2018) Treatment of reverse-osmosis concentrate of printing and dyeing wastewater by electro-oxidation process with controlled oxidation-reduction potential (ORP). Chemosphere 201:621–626. https://doi.org/10.1016/j.chemosphere.2018.03.051

    CAS  Article  Google Scholar 

  37. Yaseen DA, Scholz M (2019) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol 16:1193–1226. https://doi.org/10.1007/s13762-018-2130-z

    CAS  Article  Google Scholar 

  38. Zarei M, Davarpanah A, Mokhtarian N, Farahbod F (2020) Integrated feasibility experimental investigation of hydrodynamic, geometrical and operational characterization of methanol conversion to formaldehyde. Energy Sour Part A Recov Util Environ Eff 42:89–103. https://doi.org/10.1080/15567036.2019.1587057

    CAS  Article  Google Scholar 

  39. Zhou L, Hu Z, Zhang C, Bi Z, Jin T, Zhou M (2013) Electrogeneration of hydrogen peroxide for electro-Fenton system by oxygen reduction using chemically modified graphite felt cathode. Sep Purif Technol 111:131–136. https://doi.org/10.1016/j.seppur.2013.03.038

    CAS  Article  Google Scholar 

  40. Zhou L, Zhou H, Yang X (2019) Preparation and performance of a novel starch-based inorganic/organic composite coagulant for textile wastewater treatment. Sep Purif Technol 210:93–99. https://doi.org/10.1016/j.seppur.2018.07.089

    CAS  Article  Google Scholar 

  41. Zou J, Peng X, Li M, Xiong Y, Wang B, Dong F, Wang B (2017) Electrochemical oxidation of COD from real textile wastewaters: kinetic study and energy consumption. Chemosphere 171:332–338. https://doi.org/10.1016/j.chemosphere.2016.12.065

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of National Key Research and Development Program of China (No. 2019YFC0400502), the Fundamental Research Funds for the Central Universities (19D111321, 20D111318) and Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (CUSF-DH-D-2020068).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Q. Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsibility editor: Samareh Mirkia.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Chen, Q. & Zhou, J. Influence of typical electrolytes on electrooxidation of bio-refractory reactive dye. Int. J. Environ. Sci. Technol. (2021). https://doi.org/10.1007/s13762-021-03184-7

Download citation

Keywords

  • Electrolyte
  • Electrode
  • Electrochemical oxidation
  • Dyeing wastewater
  • Reactive dye