Kinetic and equilibrium studies of methylene blue adsorption on functionalized polymethyl methacrylate in polyvinylidene fluoride–hexafluoropolypropylene matrix

Abstract

Herein a novel polymeric adsorbent composite material was introduced for the adsorption of methylene blue from aqueous solutions for the purpose of water treatment. Adsorption process was examined by using Langmuir and Freundlich isotherm models together with pseudo-first and second order kinetic analysis. It was found that characteristic of the adsorption process was well described by Langmuir isotherm following pseudo-first order kinetic route. The maximum monolayer adsorption capacity was determined as 49.04 mg g−1. In light of thermodynamic parameters of the adsorption and removal of MB from the composite in acidic solution suggested that the process was based on ion-exchange mechanism. Negative values of Gibbs free energies changing from − 5.41 to − 15.99 kJ mol−1 with increasing temperature demonstrated that adsorption process occurs spontaneously. Heat of adsorption and entropy values were found as 58.30 kJ mol−1 and 0.23 kJ mol K−1, respectively. Therefore, adsorption process was endothermic in nature without noticeable disorder. The material consisting of functionalized poly(methyl methactrylate) in the polyvinylidene fluoride–hexafluoropolypropylene matrix is considered to be a potential adsorbent material for the treatment of polluted waters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Allègre C, Moulin P, Maisseu M, Charbit F (2006) Treatment and reuse of reactive dyeing effluents. J Membr Sci 269:15–34. https://doi.org/10.1016/j.memsci.2005.06.014

    CAS  Article  Google Scholar 

  2. Al-Sabagh AM, Moustafa YM, Hamdy A et al (2018) Preparation and characterization of sulfonated polystyrene/magnetite nanocomposites for organic dye adsorption. Egypt J Pet 27:403–413. https://doi.org/10.1016/j.ejpe.2017.07.004

    Article  Google Scholar 

  3. Arias F, Sen TK (2009) Removal of zinc metal ion (Zn2+) from its aqueous solution by kaolin clay mineral: a kinetic and equilibrium study. Colloids Surf A Physicochem Eng Asp 348:100–108. https://doi.org/10.1016/j.colsurfa.2009.06.036

    CAS  Article  Google Scholar 

  4. Auta M, Hameed BH (2014) Chitosan–clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chem Eng J 237:352–361. https://doi.org/10.1016/j.cej.2013.09.066

    CAS  Article  Google Scholar 

  5. Bingjun P, Bingcai P, Weiming Z, Lu L, Quanxing Z, Shourong Z (2009) Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem Eng J 151:19–29. https://doi.org/10.1016/j.cej.2009.02.036

    CAS  Article  Google Scholar 

  6. Cheng M, Zeng G, Huang D et al (2016) Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem Eng J 284:582–598. https://doi.org/10.1016/j.cej.2015.09.001

    CAS  Article  Google Scholar 

  7. Dai H, Huang Y, Huang H (2018) Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydr Polym 185:1–11. https://doi.org/10.1016/j.carbpol.2017.12.073

    CAS  Article  Google Scholar 

  8. El-Sharkaway EA, Kamel RM, El-Sherbiny IM, Gharib SS (2019) Removal of methylene blue from aqueous solutions using polyaniline/graphene oxide or polyaniline/reduced graphene oxide composites. Environ Technol. https://doi.org/10.1080/09593330.2019.1585481

    Article  Google Scholar 

  9. Fagundes AP, Macuvele DLP, Padoin N, Soares C, Riella HG (2019) A novel ultrahigh-molecular-weight polyethylene-based nanocomposite for contaminants adsorption in aqueous systems. Mater Lett 240:197–200. https://doi.org/10.1016/j.matlet.2018.12.102

    CAS  Article  Google Scholar 

  10. Fu J, Chen Z, Wang M, Liu S, Zhang J, Zhang J, Xu Q (2015) Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chem Eng J 259:53–61. https://doi.org/10.1016/j.cej.2014.07.101

    CAS  Article  Google Scholar 

  11. Holkar CR, Jadhav AJ, Pinjari DV et al (2016) A critical review on textile wastewater treatments: possible approaches. J Environ Manag 182:351–366. https://doi.org/10.1016/j.jenvman.2016.07.090

    CAS  Article  Google Scholar 

  12. Holliday L, Robinson J (1973) Review: the thermal expansion of composites based on polymers. J Mater Sci 8:301–311. https://doi.org/10.1007/BF00550148

    CAS  Article  Google Scholar 

  13. Jianwei F, Zhonghui C, Minghuan W, Shujun L, Jinghui Z, Jianan Z, Runping H, Qun X (2015) Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chem Eng J 259:53–61. https://doi.org/10.1016/j.cej.2014.07.101

    CAS  Article  Google Scholar 

  14. Johns J, Rao V (2011) Adsorption of methylene blue onto natural rubber/chitosan blends. Int J Polym Mater 60(10):766–775. https://doi.org/10.1080/00914037.2010.551361

    CAS  Article  Google Scholar 

  15. Junlapong K, Maijan P, Chaibundit C, Chantarak S (2020) Effective adsorption of methylene blue by biodegradable superabsorbent cassava starch-based hydrogel. Int J Biol Macromol 158:258–264. https://doi.org/10.1016/j.ijbiomac.2020.04.247

    CAS  Article  Google Scholar 

  16. Kanwal F, Rehman R, Bakhsh IQ (2018) Batch wise sorptive amputation of diamond green dye from aqueous medium by novel Polyaniline-Alstonia scholaris leaves composite in ecofriendly way. J Clean Prod 196:350–357. https://doi.org/10.1016/j.jclepro.2018.06.056

    CAS  Article  Google Scholar 

  17. Kumari S, Chauhan GS, Ahn JH (2016) Novel cellulose nanowhiskers-based polyurethane foam for rapid and persistent removal of methylene blue from its aqueous solutions. Chem Eng J 304:728–736. https://doi.org/10.1016/j.cej.2016.07.008

    CAS  Article  Google Scholar 

  18. Lefebvre L, Agusti G, Bouzeggane A, Edouard D (2018) Adsorption of dye with carbon media supported on polyurethane open cell foam. Catal Today 301:98–103. https://doi.org/10.1016/j.cattod.2017.05.025

    CAS  Article  Google Scholar 

  19. Liang C-Z, Sun S-P, Li F-Y et al (2014) Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. J Membr Sci 469:306–315. https://doi.org/10.1016/j.memsci.2014.06.057

    CAS  Article  Google Scholar 

  20. Liu T, Jing L, Cui L, Liu Q, Zhang X (2018) Facile one-pot synthesis of a porphyrin-based hydrophilic porous organic polymer and application as recyclable absorbent for selective separation of methylene blue. Chemosphere 212:1038–1046. https://doi.org/10.1016/j.chemosphere.2018.08.122

    CAS  Article  Google Scholar 

  21. Nasar A, Mashkoor F (2019) Application of polyaniline-based adsorbents for dye removal from water and wastewater—a review. Environ Sci Pollut Res 26:5333–5356. https://doi.org/10.1007/s11356-018-3990-y

    CAS  Article  Google Scholar 

  22. Pan B, Pan B, Zhang W et al (2009) Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem Eng J 151:19–29. https://doi.org/10.1016/j.cej.2009.02.036

    CAS  Article  Google Scholar 

  23. Sanchez LM, Ollier RP, Alvarez VA (2019) Sorption behavior of polyvinyl alcohol/bentonite hydrogels for dyes removal. J Polym Res 26:142. https://doi.org/10.1007/s10965-019-1807-4

    CAS  Article  Google Scholar 

  24. Selvi T, Hema M (2014) Effect of plasticizer on poly(vinyl alcohol): poly(vinylidene fluoride) blend polymer electrolyte. Int J Chem Technol 6:5265–5269

    Google Scholar 

  25. Sheng L, Zhang Y, Tang F, Liu S (2018) Mesoporous/microporous silica materials: preparation from natural sands and highly efficient fixed-bed adsorption of methylene blue in wastewater. Microporous Mesoporous Mater 257:9–18. https://doi.org/10.1016/j.micromeso.2017.08.023

    CAS  Article  Google Scholar 

  26. Tong DS, Wu CW, Adebajo MO et al (2018) Adsorption of methylene blue from aqueous solution onto porous cellulose-derived carbon/montmorillonite nanocomposites. Appl Clay Sci 161:256–264. https://doi.org/10.1016/j.clay.2018.02.017

    CAS  Article  Google Scholar 

  27. Umoren SA, Etim UJ, Israel AU (2013) Adsorption of methylene blue from industrial effluent using poly (vinyl alcohol). J Mater Environ Sci 4(1):75–86

    CAS  Google Scholar 

  28. Varghese AG, Paul SA, Latha MS (2019) Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents. Environ Chem Lett 17(2):867–877. https://doi.org/10.1007/s10311-018-00843-z

    CAS  Article  Google Scholar 

  29. Vilela PB, Dalalibera A, Duminelli EC et al (2019) Adsorption and removal of chromium(VI) contained in aqueous solutions using a chitosan-based hydrogel. Environ Sci Pollut Res 26:28481–28489. https://doi.org/10.1007/s11356-018-3208-3

    CAS  Article  Google Scholar 

  30. Walsh GE, Bahner LH, Horning WB (1980) Toxicity of textile mill effluents to freshwater and estuarine algae, crustaceans and fishes. Environ Pollut A 21:169–179. https://doi.org/10.1016/0143-1471(80)90161-0

    CAS  Article  Google Scholar 

  31. Wang Q, Ju J, Tan Y et al (2019a) Controlled synthesis of sodium alginate electrospun nanofiber membranes for multi-occasion adsorption and separation of methylene blue. Carbohydr Polym 205:125–134. https://doi.org/10.1016/j.carbpol.2018.10.023

    CAS  Article  Google Scholar 

  32. Wang N, Chen J, Wang J, Feng J, Yan W (2019b) Removal of methylene blue by polyaniline/TiO2 hydrate: adsorption kinetic, isotherm and mechanism studies. Powder Technol 347:93–102

    CAS  Article  Google Scholar 

  33. Wen Y, Liu J, Song J, Gong J, Chen H, Tang T (2015) Conversion of polystyrene into porous carbon sheets and hollow carbon shells over different magnesium oxide templates for efficient removal of methylene blue. RSC Adv 5(127):105047–105056. https://doi.org/10.1039/C5RA18505J

    CAS  Article  Google Scholar 

  34. Zhang Z, Wu G, Xu Z et al (2018) Adsorption of Methyl Blue onto uniform carbonaceous spheres prepared via an anionic polyacrylamide-assisted hydrothermal route. Mater Chem Phys 208:8–18. https://doi.org/10.1016/j.matchemphys.2018.01.025

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Polat.

Ethics declarations

Conflict of interest

The authors declare that there is no confict of interest regarding the publication of this article.

Additional information

Editorial responsibility: S. Mirkia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Polat, K., Bursali, E.A. Kinetic and equilibrium studies of methylene blue adsorption on functionalized polymethyl methacrylate in polyvinylidene fluoride–hexafluoropolypropylene matrix. Int. J. Environ. Sci. Technol. (2021). https://doi.org/10.1007/s13762-021-03133-4

Download citation

Keywords

  • Langmuir
  • pseudo-first order kinetic
  • Polymer composite
  • Waste water