Biodegradation of five pharmaceuticals: estimation by predictive models and comparison with activated sludge data

Abstract

This study investigated the biodegradation potential of five pharmaceutical micropollutants, acetaminophen, ibuprofen, carbamazepine, sulfamethoxazole and erythromycin, under aerobic conditions. First, theoretical aerobic biodegradation potential of these pharmaceuticals was investigated using the BIOWIN models of the Estimation Programs Interface Suite. The results were then compared with data from activated sludge experiments. The main novelty of this work was that it showed why deviations occurred between theoretical and experimental results. For example, erythromycin was found as the least biodegradable compound in BIOWIN models. On the other hand, carbamazepine proved to be the least biodegradable under experimental conditions. To explain such deviations, biodegradation mechanisms, biodegradation rates and biosorption of pharmaceuticals were taken into consideration. One reason for deviation is that the predictive BIOWIN models consider the single pharmaceutical and relate biodegradability to molecular structure alone. These two points often lead to underestimation of biodegradation. On the other hand, the present study revealed that biodegradation of pharmaceuticals can be enhanced under the microbial and operating conditions of an activated sludge system. Pharmaceuticals can be used as secondary substrates if biodegradable substances are present in an activated sludge. More importantly, they can often be used as cometabolites in the presence of nitrifiers. Also, compared to predicted results, a poorer sorption is observed in activated sludge, indicating that these pharmaceuticals would degrade in liquid phase. Databases/predictive tools are very helpful to have an initial idea about biodegradability. But, in estimation of real biodegradability, there is a need to consider the factors highlighted in this work.

This is a preview of subscription content, access via your institution.

References

  1. Abegglen C, Joss A, McArdell CS, Fink G, Schlüsener MP, Ternes TA, Siegrist H (2009) The fate of selected micropollutants in a single-house MBR. Water Res 43:2036–2046. https://doi.org/10.1016/j.watres.2009.02.005

    CAS  Article  Google Scholar 

  2. Aissaoui S, Ouled-Haddar H, Sifour M, Beggah C, Benhamada F (2017) Biological removal of the mixed pharmaceuticals: diclofenac, ibuprofen, and sulfamethoxazole using a bacterial consortium. Iran J Biotechnol 15:135

    Article  Google Scholar 

  3. Alexy R, Kümpel T, Kümmerer K (2004) Assessment of degradation of 18 antibiotics in the closed bottle test. Chemosphere 57:505–512. https://doi.org/10.1016/j.chemosphere.2004.06.024

    CAS  Article  Google Scholar 

  4. Almeida B, Kjeldal H, Lolas I, Knudsen AD, Carvalho G, Nielsen KL, Barreto Crespo MT, Stensballe A, Nielsen JL (2013) Quantitative proteomic analysis of ibuprofen-degrading Patulibacter sp. strain I11. Biodegradation 24:615–630. https://doi.org/10.1007/s10532-012-9610-5

    CAS  Article  Google Scholar 

  5. Alvarino T, Suarez S, Lema JM, Omil F (2014) Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors. J Hazard Mater 278:506–513. https://doi.org/10.1016/j.jhazmat.2014.06.031

    CAS  Article  Google Scholar 

  6. Alvarino T, Nastold P, Suarez S, Omil F, Corvini PFX, Bouju H (2016) Role of biotransformation, sorption and mineralization of 14C-labelled sulfamethoxazole under different redox conditions. Sci Tot Environ 542:706–715. https://doi.org/10.1016/j.scitotenv.2015.10.140

    CAS  Article  Google Scholar 

  7. Beelen ESE (2007) Municipal Waste Water Treatment Plant (WWTP) effluents: a concise overview of the occurrence of organic substances. Association of River Waterworks-RIWA

  8. Boethling RS, Costanza J (2010) Domain of EPI suite biotransformation models. SAR QSAR Environ Res 21:415–443. https://doi.org/10.1080/1062936X.2010.501816

    CAS  Article  Google Scholar 

  9. Boethling RS, Sommer E, DiFiore D (2007) Designing small molecules for biodegradability. Chem Rev 107:2207–2227. https://doi.org/10.1021/cr050952t

    CAS  Article  Google Scholar 

  10. Çeçen F, Tezel U, Kocamemi BA (2017) Experimental assessment of the inhibitory effect and biodegradation of hazardous pollutants. In: Çeçen F, Tezel U (eds) Hazardous pollutants in biological treatment systems: Fundamentals and a guide to experimental research. IWA Publishing, London, pp 183–237. https://doi.org/10.2166/9781780407715_183

    Google Scholar 

  11. Chen Y, Rosazza JP (1994) Microbial transformation of ibuprofen by a Nocardia species. Appl Environ Microbiol 60:1292–1296

    CAS  Article  Google Scholar 

  12. Clara M, Kreuzinger N, Strenn B, Gans O, Kroiss H (2005a) The solids retention time—a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Res 39:97–106. https://doi.org/10.1016/j.watres.2004.08.036

    CAS  Article  Google Scholar 

  13. Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H (2005b) Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res 39:4797–4807. https://doi.org/10.1016/j.watres.2005.09.015

    CAS  Article  Google Scholar 

  14. Coates A, Hu Y, Bax R, Page C (2002) The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discovery 1:895–910

    CAS  Article  Google Scholar 

  15. De Gusseme B, Vanhaecke L, Verstraete W, Boon N (2011) Degradation of acetaminophen by Delftia tsuruhatensis and Pseudomonas aeruginosa in a membrane bioreactor. Water Res 45:1829–1837. https://doi.org/10.1016/j.watres.2010.11.040

    CAS  Article  Google Scholar 

  16. Fernandez-Fontaina E, Omil F, Lema JM, Carballa M (2012) Influence of nitrifying conditions on the biodegradation and sorption of emerging micropollutants. Water Res 46:5434–5444. https://doi.org/10.1016/j.watres.2012.07.037

    CAS  Article  Google Scholar 

  17. Fernandez-Fontaina E, Pinho I, Carballa M, Omil F, Lema JM (2013) Biodegradation kinetic constants and sorption coefficients of micropollutants in membrane bioreactors. Biodegradation 24:165–177. https://doi.org/10.1007/s10532-012-9568-3

    CAS  Article  Google Scholar 

  18. Fernandez-Fontaina E, Gomes IB, Aga DS, Omil F, Lema JM, Carballa M (2016) Biotransformation of pharmaceuticals under nitrification, nitratation and heterotrophic conditions. Sci Total Environ 541:1439–1447. https://doi.org/10.1016/j.scitotenv.2015.10.010

    CAS  Article  Google Scholar 

  19. Gauthier H, Yargeau V, Cooper DG (2010) Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism. Sci Total Environ 408:1701–1706. https://doi.org/10.1016/j.scitotenv.2009.12.012

    CAS  Article  Google Scholar 

  20. Göbel A, Thomsen A, McArdell CS, Joss A, Giger W (2005) Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environ Sci Technol 39:3981–3989. https://doi.org/10.1021/es048550a

    CAS  Article  Google Scholar 

  21. Göktas RK, MacLeod M (2017) Hazardous pollutants in the water environment. In: Çeçen F, Tezel U (eds) Hazardous pollutants in biological treatment systems: Fundamentals and a guide to experimental research. IWA Publishing, London, pp 17–58. https://doi.org/10.2166/9781780407715_017

    Google Scholar 

  22. Gül G (2016) Antibiotic resistant Pseudomonas sp. BIOMIG1 protects susceptible bacteria from disinfectants. MSc Thesis, Institute of Environmental Sciences, Boğaziçi University, Istanbul, Turkey

  23. Hasan HA, Abdullah SRS, Al-Attabi AWN, Nash DAH, Anuar N, Rahman NA, Titah HS (2016) Removal of ibuprofen, ketoprofen, COD and nitrogen compounds from pharmaceutical wastewater using aerobic suspension-sequencing batch reactor (ASSBR). Sep Purif Technol 157:215–221. https://doi.org/10.1016/j.seppur.2015.11.017

    CAS  Article  Google Scholar 

  24. Hörsing M, Ledin A, Grabic R, Fick J, Tysklind M, la Cour Jansen J, Andersen HR (2011) Determination of sorption of seventy-five pharmaceuticals in sewage sludge. Water Res 45:4470–4482. https://doi.org/10.1016/j.watres.2011.05.033

    CAS  Article  Google Scholar 

  25. Hyland KC, Dickenson ER, Drewes JE, Higgins CP (2012) Sorption of ionized and neutral emerging trace organic compounds onto activated sludge from different wastewater treatment configurations. Water Res 46:1958–1968. https://doi.org/10.1016/j.watres.2012.01.012

    CAS  Article  Google Scholar 

  26. Jones OAH, Voulvoulis N, Lester JN (2002) Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Res 36:5013–5022. https://doi.org/10.1016/S0043-1354(02)00227-0

    CAS  Article  Google Scholar 

  27. Joss A, Keller E, Alder AC, Göbel A, McArdell CS, Ternes T, Siegrist H (2005) Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res 39:3139–3152. https://doi.org/10.1016/j.watres.2005.05.031

    CAS  Article  Google Scholar 

  28. Joss A, Zabczynski S, Göbel A, Hoffmann B, Löffler D, McArdell CS, Ternes TA, Thomsen A, Siegrist H (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40:1686–1696. https://doi.org/10.1016/j.watres.2006.02.014

    CAS  Article  Google Scholar 

  29. Kang AJ, Brown AK, Wong CS, Yuan Q (2018) Removal of antibiotic sulfamethoxazole by anoxic/anaerobic/oxic granular and suspended activated sludge processes. Biores Technol 251:151–157. https://doi.org/10.1016/j.biortech.2017.12.021

    CAS  Article  Google Scholar 

  30. Kassotaki E, Buttiglieri G, Ferrando-Climent L, Rodriguez-Roda I, Pijuan M (2016) Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products. Water Res 94:111–119. https://doi.org/10.1016/j.watres.2016.02.022

    CAS  Article  Google Scholar 

  31. Khan NA, Khan SU, Ahmed S, Farooqi IH, Yousefi M, Mohammadi AA, Changani F (2019) Recent trends in disposal and treatment technologies of emerging-pollutants-A critical review. TrAC Trends Anal Chem 122:115744. https://doi.org/10.1016/j.trac.2019.115744

    CAS  Article  Google Scholar 

  32. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2019) PubChem 2019 update: improved access to chemical data. Nucleic Acids Res 8(47):D1102–1109. https://doi.org/10.1093/nar/gky1033[PubMed PMID: 30371825]

    Article  Google Scholar 

  33. Madikizela LM, Chimuka L (2017) Occurrence of naproxen, ibuprofen, and diclofenac residues in wastewater and river water of KwaZulu-Natal Province in South Africa. Environ Monit Assess 189:348

    Article  Google Scholar 

  34. Marchlewicz A, Guzik U, Wojcieszyńska D (2017) Dynamics of ibuprofen biodegradation by Bacillus sp. B1 (2015b). Archives of Environmental Protection 43:60–64. https://doi.org/10.1515/aep-2017-0020

    Article  Google Scholar 

  35. Marco-Urrea E, Perez-Trujillo M, Vicent T, Caminal G (2009) Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 74:765–772. https://doi.org/10.1016/j.chemosphere.2008.10.040

    CAS  Article  Google Scholar 

  36. Müller E, Schüssler W, Horn H, Lemmer H (2013) Aerobic biodegradation of the sulfonamide antibiotic sulfamethoxazole by activated sludge applied as co-substrate and sole carbon and nitrogen source. Chemosphere 92:969–978. https://doi.org/10.1016/j.chemosphere.2013.02.070

    CAS  Article  Google Scholar 

  37. Naghdi M, Taheran M, Brar SK, Kermanshahi-pour A, Verma M, Surampalli RY (2018) Biotransformation of carbamazepine by laccase-mediator system: kinetics, by-products and toxicity assessment. Process Biochem 67:147–154. https://doi.org/10.1016/j.procbio.2018.02.009

    CAS  Article  Google Scholar 

  38. Nendza, M (2014) Environmental quality standard erythromycin, Umweltbundesamt (UBA). https://webetox.uba.de/webETOX/public/basics/literatur/download.do;jsessionid=5ABC79729770788A08390BD09CBB997C?id=33. Accessed 19 January 2020

  39. Pavan M, Worth AP (2008) Review of estimation models for biodegradation. QSAR Comb Sci 27:32–40. https://doi.org/10.1002/qsar.200710117

    CAS  Article  Google Scholar 

  40. Peng L, Kassotaki E, Liu Y, Sun J, Dai X, Pijuan M, Rodriguez-Roda I, Buttiglier G, Ni BJ (2017) Modelling cometabolic biotransformation of sulfamethoxazole by an enriched ammonia oxidizing bacteria culture. Chem Eng Sci 173:465–473. https://doi.org/10.1016/j.ces.2017.08.015

    CAS  Article  Google Scholar 

  41. Plosz BG, Langford KH, Thomas KV (2012) An activated sludge modeling framework for xenobiotic trace chemicals (ASM-X): assessment of diclofenac and carbamazepine. Biotechnol Bioeng 109:2757–2769. https://doi.org/10.1002/bit.24553

    CAS  Article  Google Scholar 

  42. Pomies M, Choubert JM, Wisniewski C, Miège C, Budzinski H, Coquery M (2015) Lab-scale experimental strategy for determining micropollutant partition coefficient and biodegradation constants in activated sludge. Environ Sci Pollut Res 22:4383–4395. https://doi.org/10.1007/s11356-014-3646-5

    CAS  Article  Google Scholar 

  43. Quintana JB, Weiss S, Reemtsma T (2005) Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Res 39:2654–2664. https://doi.org/10.1016/j.watres.2005.04.068

    CAS  Article  Google Scholar 

  44. Rittmann BE, McCarty PL (2001) Stoichiometry and bacterial energetics. Principles and Applications, Environmental Biotechnology, pp 126–164

    Google Scholar 

  45. Rossmassler K, Kim S, Broeckling CD, Galloway S, Prenni J, Susan K (2019) Impact of primary carbon sources on microbiome shaping and biotransformation of pharmaceuticals and personal care products. Biodegradation 30:127–145. https://doi.org/10.1007/s10532-019-09871-0

    CAS  Article  Google Scholar 

  46. Rücker C, Kümmerer K (2012) Modeling and predicting aquatic aerobic biodegradation–a review from a user’s perspective. Green Chem 14:875–887. https://doi.org/10.1039/C2GC16267A

    Article  Google Scholar 

  47. Smook TM, Zho H, Zytner RG (2008) Removal of ibuprofen from wastewater: comparing biodegradation in conventional, membrane bioreactor, and biological nutrient removal treatment systems. Water Sci Technol 57:1–8. https://doi.org/10.2166/wst.2008.658

    CAS  Article  Google Scholar 

  48. Suarez S, Lema JM, Omil F (2010) Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions. Water Res 44:3214–3224. https://doi.org/10.1016/j.watres.2010.02.040

    CAS  Article  Google Scholar 

  49. Svahn O, Bjorklund E (2019) Extraction efficiency of a commercial espresso machine compared to a stainless-steel column pressurized hot water extraction (PHWE) system for the determination of 23 pharmaceuticals, antibiotics and hormones in sewage sludge. Appl Sci 9:1509. https://doi.org/10.3390/app9071509

    CAS  Article  Google Scholar 

  50. Ternes TA, Herrmann N, Bonerz M, Knacker T, Siegrist H, Joss A (2004a) A rapid method to measure the solid–water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. Water Res 38:4075–4084. https://doi.org/10.1016/j.watres.2004.07.015

    CAS  Article  Google Scholar 

  51. Ternes T, Janex-Habibi ML, Knacker T, Kreuzinger N, Siegrist H (2004b) Assessment of technologies for the removal of pharmaceuticals and personal care products in sewage and drinking water facilities to improve the indirect potable water reuse. Contract No. EVK1-CT-2000-00047

  52. Tran NH, Urase T, Kusakabe O (2009) The characteristics of enriched nitrifier culture in the degradation of selected pharmaceutically active compounds. J Hazard Mater 171:1051–1057. https://doi.org/10.1016/j.jhazmat.2009.06.114

    CAS  Article  Google Scholar 

  53. Tunkel J, Howard PH, Boethling RS, Stiteler W, Loonen H (2000) Predicting ready biodegradability in the Japanese Ministry of International Trade and Industry test. Environ Toxicol Chem 19:2478–2485. https://doi.org/10.1002/etc.5620191013

    CAS  Article  Google Scholar 

  54. Urase T, Kikuta T (2005) Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process. Water Res 39:1289–1300. https://doi.org/10.1016/j.watres.2005.01.015

    CAS  Article  Google Scholar 

  55. US EPA (2012) Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.11. United States Environmental Protection Agency, Washington, DC, USA

  56. Verlicchi P, Al Aukidy M, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Sci Tot Environ 429:123–155. https://doi.org/10.1016/j.scitotenv.2012.04.028

    CAS  Article  Google Scholar 

  57. Wick A, Fink G, Joss A, Siegrist H, Ternes TA (2009) Fate of beta blockers and psycho-active drugs in conventional wastewater treatment. Water Res 43:1060–1074. https://doi.org/10.1016/j.watres.2008.11.031

    CAS  Article  Google Scholar 

  58. Wu S, Zhang L, Chen J (2012) Paracetamol in the environment and its degradation by microorganisms. Appl Microbiol Biotechnol 96:875–884. https://doi.org/10.1007/s00253-012-4414-4

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bogazici University Research Fund (BAP Grant 13000).

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Çeçen.

Ethics declarations

Conflict of interest

No conflicts are present.

Additional information

Editorial responsibility: Samareh Mirkia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Çeçen, F., Gül, G. Biodegradation of five pharmaceuticals: estimation by predictive models and comparison with activated sludge data. Int. J. Environ. Sci. Technol. 18, 327–340 (2021). https://doi.org/10.1007/s13762-020-02820-y

Download citation

Keywords

  • Biodegradation
  • BIOWIN
  • Pharmaceuticals
  • Activated sludge
  • Cometabolism
  • Sorption