Removal of methylene blue from aqueous solution by ryegrass straw

Abstract

This study investigates the methylene blue adsorption by ryegrass by-products. Milled ryegrass straw (Lolium multiflorum Lam.), treated straw, and the biochar produced from the straw with chemical activation with sodium hydroxide solution were used as adsorbent materials. To obtain the biochar, the pyrolysis was performed in a tubular reactor with nitrogen flow at 623 K. The characterization of all the adsorbents was realized analyzing the real density, bulk density, particle diameter, proximate analysis, thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy. Kinetic studies and adsorption isotherms were evaluated with models fit predicted in the literature. The biochar showed a well-developed porous structure. In the treated straw, there occurred a degradation of compounds such as hemicelluloses and lignin, which gave the modification in the surface of the material. For the kinetic studies, the pseudo-first-order, pseudo-second-order, and Avrami models presented a good fit. For the adsorption isotherms, the Sips model provided the maximum adsorption capacity to the milled straw (28.7 mg/g) and treated straw (67.19 mg/g). The most promising results were obtained by the treated straw, with high efficiency in the removal of the methylene blue dye from the solution, reaching values higher than 99%.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abd Elhafez SE, Hamad HA, Zaatout AA, Malash GF (2016) Management of agricultural waste for removal of heavy metals from aqueous solution: adsorption behaviors, adsorption mechanisms, environmental protection, and techno-economic analysis. Environ Sci Pollut Res 24(2):1397–1415. https://doi.org/10.1007/s11356-016-7891-7

    CAS  Article  Google Scholar 

  2. Aharoni C, Ungarish M (1977) Kinetics of activated chemisorption. Part 2-theoretical models. J Chem Soc, Faraday Trans 1 Phys Chem Condens Phases 73:456–464

    CAS  Google Scholar 

  3. Ahmed MJ, Dhedan SK (2012) Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Phase Equilib 317:9–14. https://doi.org/10.1016/j.fluid.2011.12.026

    CAS  Article  Google Scholar 

  4. Ahmedna M, Marshall WE, Rao RM (2000) Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties. Biores Technol 71:113–123. https://doi.org/10.1016/S0960-8524(99)00070-X

    CAS  Article  Google Scholar 

  5. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues–wheat straw and soy hulls. Biores Technol 99:1664–1671. https://doi.org/10.1016/j.biortech.2007.04.029

    CAS  Article  Google Scholar 

  6. Aljeboree AM, Alshirifi AN, Alkaim AF (2017) Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab J Chem 10:S3381–S3393. https://doi.org/10.1016/j.arabjc.2014.01.020

    CAS  Article  Google Scholar 

  7. Alves CCO, Franca AS, Oliveira LS (2015) Comparison of microwave assisted thermo-chemical procedures in the production of adsorbents for wastewater treatment. Int J Environ Sci Dev 6(12):888–894. https://doi.org/10.7763/IJESD.2015.V6.717

    CAS  Article  Google Scholar 

  8. American Society for Testing and Materials (2013a) ASTM-D1762: Standard test method for chemical analysis of wood charcoal. West Conshohocken

  9. American Society for Testing and Materials (2013b) ASTM E872: Standard test method for volatile matter in the analysis of particulate wood fuels. West Conshohocken

  10. American Society for Testing and Materials (2015). ASTM E1755: Standard test method for ash in biomass. West Conshohocken

  11. Anisuzzaman SM, Joseph CG, Taufiq-Yap YH, Krishnaiah D, Tay VV (2015) Modification of commercial activated carbon for the removal of 2, 4-dichlorophenol from simulated wastewater. J King Saud Univ Sci 27:318–330. https://doi.org/10.1016/j.jksus.2015.01.002

    Article  Google Scholar 

  12. AOAC (1997)-Official Methods of analysis of the Association of Official Analytical Chemists. Ed. Washington, D.C

  13. Banerjee S, Dastidar MG (2005) Use of jute processing wastes for treatment of wastewater contaminated with dye and other organics. Biores Technol 96:1919–1928. https://doi.org/10.1016/j.biortech.2005.01.039

    CAS  Article  Google Scholar 

  14. Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2010) Multivariate statistical analysis of X-ray data from cellulose: a new method to determine degree of crystallinity and predict hydrolysis rates. Biores Technol 101:4461–4471. https://doi.org/10.1016/j.biortech.2010.01.068

    CAS  Article  Google Scholar 

  15. Bhattacharyya KG, Sharma A (2005) Kinetics and thermodynamics of methylene blue adsorption on neem (Azadirachta indica) leaf powder. Dye Pig. 65:51–59. https://doi.org/10.1016/j.dyepig.2004.06.016

    CAS  Article  Google Scholar 

  16. Bhomick PC, Supong A, Baruah M, Pongener C, Gogoi C, Sinha D (2019) Alizarin Red S adsorption onto biomass-based activated carbon: optimization of adsorption process parameters using Taguchi experimental design. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-019-02389-1

    Article  Google Scholar 

  17. Borah L, Goswami M, Phukan P (2015) Adsorption of methylene blue and eosin yellow using porous carbon prepared from tea waste: adsorption equilibrium, kinetics and thermodynamics study. J Environ Chem Eng 3:1018–1028. https://doi.org/10.1016/j.jece.2015.02.013

    CAS  Article  Google Scholar 

  18. Brião GV, Jahn L, Foletto EL, Dotto GL (2017) Adsorption of crystal violet dye onto a mesoporous ZSM-5 zeolite synthetized using chitin as template. J Colloid Interface Sci 508:313–322. https://doi.org/10.1016/j.jcis.2017.08.070

    CAS  Article  Google Scholar 

  19. Bulut Y, Aydin H (2006) A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194:259–267. https://doi.org/10.1016/j.desal.2005.10.032

    CAS  Article  Google Scholar 

  20. Camino G, Scheirs J, Tumiatti W (2001) Overview of water evolution during the thermal degradation of cellulose. Eur Polymer J 37:933–942. https://doi.org/10.1016/S0014-3057(00)00211-1

    Article  Google Scholar 

  21. Castro DO, Ruvolo-Filho A, Frollini E (2012) Materials prepared from biopolyethylene and curaua fibers: composites from biomass. Polym Test 31:880–888. https://doi.org/10.1016/j.polymertesting.2012.05.011

    CAS  Article  Google Scholar 

  22. Cazetta AL, Vargas AMM, Nogami EM, Kunita MH, Guilherme MR, Martins AC, Silva TL, Moraes JCG, Almeida VC (2011) NaOH-activated carbon of high surface area produced from coconut shell: kinetics and equilibrium studies from the methylene blue adsorption. Chem Eng J 174:117–125. https://doi.org/10.1016/j.cej.2011.08.058

    CAS  Article  Google Scholar 

  23. Chen W, He F, Zhang S, Xv H, Xv Z (2018) Development of porosity and surface chemistry of textile waste jute-based activated carbon by physical activation. Environ Sci Pollut Res 25(10):9840–9848. https://doi.org/10.1007/s11356-018-1335-5

    CAS  Article  Google Scholar 

  24. Chowdhury S, Chakraborty S, Saha PD (2013) Response surface optimization of a dynamic dye adsorption process: a case study of crystal violet adsorption onto NaOH-modified rice husk. Environ Sci Pollut Res 20:1698–1705. https://doi.org/10.1007/s11356-012-0989-7

    CAS  Article  Google Scholar 

  25. Do DD (1998) Adsorption analysis: equilibria and kinetics. Imperial College Press, London

    Google Scholar 

  26. El-Hendawy AA, Girgis BS, Smith E, Louis MM (2009) Pilot production of activated carbon from cotton stalks using H3PO4. J Anal Appl Pyrol 86:180–184. https://doi.org/10.1016/j.jaap.2009.06.002.

    Article  Google Scholar 

  27. Everett DH (1972) Manual of symbols and terminology for physicochemical quantities and units, apendix II: definitions, terminology and symbols in colloid and surface chemistry. Pure Appl Chem. https://doi.org/10.1351/pac197231040577

    Article  Google Scholar 

  28. Febrianto J, Kosasih AN, Sunarso J, Ju Y, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162(2–3):616–645. https://doi.org/10.1016/j.jhazmat.2008.06.042

    CAS  Article  Google Scholar 

  29. Ferrero F (2007) Dye removal by low cost adsorbents: hazelnut shells in comparison with wood sawdust. J Hazard Mater 142:144–152. https://doi.org/10.1016/j.jhazmat.2006.07.072

    CAS  Article  Google Scholar 

  30. Flores RA (2006) Evaluation and selection of annual ryegrass (Lolium multiflorum L.). Dissertation, Federal University of Rio Grande do Sul (in Portuguese)

  31. Fontana KB, Chaves ES, Sanchez JDS, Watanabe ERLR, Pietrobelli JMTA, Lenzi GG (2016) Textile dye removal from aqueous solution by malt bagasse: isotherm, kinetic and thermodynamic studies. Ecotoxicol Environ Saf 124:329–336. https://doi.org/10.1016/j.ecoenv.2015.11.012

    CAS  Article  Google Scholar 

  32. Fontaneli RS, Santos HP, Fontaneli RS (2012) Forage for agricultural-livestock-forest integration in the South-Brazilian Region. EMBRAPA, Brasilia (in Portuguese)

    Google Scholar 

  33. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. https://doi.org/10.1016/j.cej.2009.09.013

    CAS  Article  Google Scholar 

  34. Franklin RE (1951) Crystallite growth in graphitizing and non-graphitizing carbons. Proc Roy Soc A 209:196–218. https://doi.org/10.1098/rspa.1951.0197

    CAS  Article  Google Scholar 

  35. Franz M, Arafat HA, Pinto NG (2000) Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon. Carbon 38:1807–1819. https://doi.org/10.1016/S0008-6223(00)00012-9.

    CAS  Article  Google Scholar 

  36. Freundlich H (1906) Over the adsorption in solution. Z Phys Chem A 57:358–471

    Google Scholar 

  37. Gassan J, Bledzki AK (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274. https://doi.org/10.1016/S0079-6700(98)00018-5

    Article  Google Scholar 

  38. Ghaedi M, Sadeghiana B, Pebdani AA, Sahraei R, Daneshfar A, Duran C (2012) Kinetics, thermodynamics and equilibrium evaluation of direct yellow 12 removal by adsorption onto silver nanoparticles loaded activated carbon. Chem Eng J 187:133–141. https://doi.org/10.1016/j.cej.2012.01.111

    CAS  Article  Google Scholar 

  39. Gil A, Assis FCC, Albeniz S, Korili SA (2011) Removal of dyes from wastewaters by adsorption on pillared clays. Chem Eng J 168(3):1032–1040. https://doi.org/10.1016/j.cej.2011.01.078

    CAS  Article  Google Scholar 

  40. Giles CH, Macewan TH, Nakhwa SN, Smith D (1960) Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J Chem Soc. https://doi.org/10.1039/jr9600003973

    Article  Google Scholar 

  41. Gisi S, Lofrano G, Grassi M, Notarnicola M (2016) Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain Mater Technol 9:10–40. https://doi.org/10.1016/j.susmat.2016.06.002

    CAS  Article  Google Scholar 

  42. Gnanasekaran L, Hemamalini R, Saravanan R, Ravichandran K, Gracia F, Gupta VK (2016) Intermediate state created by dopant ions (Mn, Co and Zr) into TiO2 nanoparticles for degradation of dyes under visible light. J Mol Liq 223:652–659. https://doi.org/10.1016/j.molliq.2016.08.105

    CAS  Article  Google Scholar 

  43. Gong R, Li M, Yang C, Sun Y, Chen J (2005) Removal of cationic dyes from aqueous solution by adsorption on peanut hull. J Hazard Mater B121:247–250. https://doi.org/10.1016/j.dyepig.2004.12.003

    CAS  Article  Google Scholar 

  44. Gupta VK, Jain R, Varshney S (2007) Removal of Reactofix golden yellow 3 RFN from aqueous solution. J Hazard Mater 142:443–448. https://doi.org/10.1016/j.jhazmat.2006.08.048

    CAS  Article  Google Scholar 

  45. Haimour NM, Emeish S (2006) Utilization of date stones for production of activated carbon using phosphoric acid. Waste Manag 26(6):651–660. https://doi.org/10.1016/j.wasman.2005.08.004

    CAS  Article  Google Scholar 

  46. Hameed BH (2009) Grass waste: a novel sorbent for the removal of basic dye from aqueous solution. J Hazard Mater 166:233–238. https://doi.org/10.1016/j.jhazmat.2008.11.019

    CAS  Article  Google Scholar 

  47. Hameed BH, Ahmad AL, Latiff KNA (2007) Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes Pigm 75:143–149. https://doi.org/10.1016/j.dyepig.2006.05.039.

    CAS  Article  Google Scholar 

  48. Han R, Wang Y, Han P, Shi J, Yang J, Lu Y (2006) Removal of methylene blue from aqueous solution by chaff in batch mode. J Hazard Mater 137:550–557. https://doi.org/10.1016/j.jhazmat.2006.02.029

    CAS  Article  Google Scholar 

  49. Han R, Zou W, Yu W, Cheng S, Wang Y, Shi J (2007) Biosorption of methylene blue from aqueous solution by fallen phoenix tree’s leaves. J Hazard Mater 141:156–162. https://doi.org/10.1016/j.jhazmat.2006.06.107.

    CAS  Article  Google Scholar 

  50. Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136(3):681–689. https://doi.org/10.1016/j.jhazmat.2005.12.043

    CAS  Article  Google Scholar 

  51. Ho Y, Mckay G (1999) Pseudo second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    CAS  Article  Google Scholar 

  52. Karthik V, Saravanan K, Patra C, Ushadevi B, Vairam S, Selvaraju N (2018) Biosorption of acid yellow 12 from simulated wastewater by non-viable T. harzianum: kinetics, isotherm and thermodynamic studies. Int J Environ Sci Technol 16(11):6895–6906. https://doi.org/10.1007/s13762-018-2073-4

    CAS  Article  Google Scholar 

  53. Khambhaty Y, Mody K, Basha S, Jha B (2009) Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger. Chem Eng J 145:489–495. https://doi.org/10.1016/j.cej.2008.05.002

    CAS  Article  Google Scholar 

  54. Konicki W, Sibera D, Mijowska E, Lendzion-Bielun Z, Narkiewicz U (2013) Equilibrium and kinetic studies on acid dye acid red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles. J Colloid Interface Sci 398:152–160. https://doi.org/10.1016/j.jcis.2013.02.021

    CAS  Article  Google Scholar 

  55. Kumar P, Chauhan MS (2019) Adsorption of chromium (VI) from the synthetic aqueous solution using chemically modified dried water hyacinth roots. J Environ. Chem Eng 7:103218. https://doi.org/10.1016/j.jece.2019.103218

    CAS  Article  Google Scholar 

  56. Kumar KV, Porkodi K (2007) Mass transfer, kinetics and equilibrium studies for the biosorption of methylene blue using Paspalum notatum. J Hazard Mater 146:214–226. https://doi.org/10.1016/j.jhazmat.2006.12.010.

    CAS  Article  Google Scholar 

  57. Kumar KV, Vadivelan V (2005) Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J Colloid Interface Sci 286:90–100. https://doi.org/10.1016/j.jcis.2005.01.007

    CAS  Article  Google Scholar 

  58. Kumara NTRN, Hamdan N, Petra MI, Tennakoon KU, Ekanayake P (2014) Equilibrium isotherm studies of adsorption of pigments extracted from kuduk-kuduk (Melastoma malabathricum L.) pulp onto TiO2 nanoparticles. J Chem 2014:1–6. https://doi.org/10.1155/2014/468975

    CAS  Article  Google Scholar 

  59. Laasri L, Elamrani MK, Cherkaoui O (2007) Removal of two cationic dyes from a textile effluent by filtration-adsorption on wood sawdust. Env Sci Pollut Res 14:237–240. https://doi.org/10.1065/espr2006.08.331

    CAS  Article  Google Scholar 

  60. Lagergren S (1898) Zur theorie der sogenannten adsorption gelõster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar 24:1–39

    Google Scholar 

  61. Lam PS, Sokhansanj S, Bi X, Lim CJ, Jayashankar T, Rezaie G, NaimiL J, Womac AR (2008) Effect of particle size and shape on physical properties of biomass grinds. In: ASABE annual international meeting. Providence, Rhode Island. https://doi.org/10.13031/2013.24879

  62. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    CAS  Article  Google Scholar 

  63. Li Y, Du Q, Liu T, Peng X, Wang J, Sun J, Wang Y, Wu S, Wang Z, Xia Y, Xia L (2013) Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem Eng Res Des 91:361–368. https://doi.org/10.1016/j.cherd.2012.07.007

    CAS  Article  Google Scholar 

  64. Li H, Dong X, Silva EB, Oliveira LM, Chen Y, Ma LQ (2017) Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178:466–478. https://doi.org/10.1016/j.chemosphere.2017.03.072

    CAS  Article  Google Scholar 

  65. Lillo-Ródenas MA, Marco-Lozar JP, Cazorla-Amorós D, Linares-Solano A (2007) Activated carbons prepared by pyrolysis of mixtures of carbon precursor/alkaline hydroxide. J Anal Appl Pyrol 80:267–275. https://doi.org/10.1016/j.jaap.2007.01.014

    CAS  Article  Google Scholar 

  66. Liu L, Fan S (2018) Removal of cadmium in aqueous solution using wheat straw biochar: effect of minerals and mechanism. Environ Sci Pollut Res 25(9):8688–8700

    CAS  Article  Google Scholar 

  67. Lopes ECN, dos Anjos FSC, Vieira EFS, Cestari AR (2003) An alternative Avrami equation to evaluate kinetic parameters of the interaction of Hg(II) with thin chitosan membranes. J Colloid Interface Sci 263:542–547. https://doi.org/10.1016/S0021-9797(03)00326-6

    CAS  Article  Google Scholar 

  68. Lowell S, Shields JE (1991) Powder surface area and porosity, vol 3. Chapman &Hall, London, p 256

    Google Scholar 

  69. Lucca-Filho OA, Porto MDM, Maia (1999) Fungi in annual ryegrass (Lolium multiflorum Lam.) seeds and their effects on pasture establishment. Braz J Seeds 21(2):142–147 in Portuguese

    Google Scholar 

  70. Ma Y (2017) Comparison of activated carbons prepared from wheat straw via ZnCl2 and KOH activation. Waste Biomass Valorization 8(3):549–559. https://doi.org/10.1007/s12649-016-9640-z

    CAS  Article  Google Scholar 

  71. Malik DS, Jain CK, Yadav AK, Kothari R, Pathak VV (2016) Removal of methylene blue dye in aqueous solution by agricultural waste. Int Res J Eng Technol 3:864–878

    Google Scholar 

  72. Mani S, Tabil LG, Sokhansanj S (2004) Evaluation of compaction equations applied to four biomass species. Can Biosyst Eng 46:3.55–3.61

    Google Scholar 

  73. Mavinkattimath RG, Kodialbail VS, Govindan S (2017) Simultaneous adsorption of remazol brilliant blue and disperse orange dyes on red mud and isotherms for the mixed dye system. Environ Sci Pollut Res 24(23):18912–18925. https://doi.org/10.1007/s11356-017-9278-9

    CAS  Article  Google Scholar 

  74. Megiatto JD Jr, Hoareau W, Gardrat C, Frollini E, Castellan A (2007) Sisal fibers: surface chemical modification using reagent obtained from a renewable source; characterization of hemicellulose and lignin as model study. J Agric Food Chem 55:8576–8584. https://doi.org/10.1021/jf071682d

    CAS  Article  Google Scholar 

  75. Mi T, Chen L, Xin S, Yu X (2015) Activated carbon from the chinese herbal medicine waste by H3PO4 activation. J Nanomater. https://doi.org/10.1155/2015/910467

    Article  Google Scholar 

  76. Mirzaei H, Almasian MR, Mousavian SMA, Sid Kalal H (2018) Plasma modification of a natural zeolite to improve its adsorption capacity of strontium ions from water samples. Int J Environ Sci Technol 16(10):6157–6166. https://doi.org/10.1007/s13762-018-2024-0

    CAS  Article  Google Scholar 

  77. Mohanty AK, Khan MA, Hinrichsen G (2000) Influence of chemical surface modification on the properties of biodegradable jute fabrics-polyester amide composites. Compos A 31:143–150. https://doi.org/10.1016/S1359-835X(99)00057-3

    Article  Google Scholar 

  78. Moreno-Castilla C (2004) Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42:83–94. https://doi.org/10.1016/j.carbon.2003.09.022

    CAS  Article  Google Scholar 

  79. Nam H, Choi W, Genuino DA, Capareda SC (2018) Development of rice straw activated carbon and its utilizations. J Environ Chem Eng 6:5221–5229. https://doi.org/10.1016/j.jece.2018.07.045

    CAS  Article  Google Scholar 

  80. Nazari S, Rahimi G, Khademi A, Nezhad J (2019) Effectiveness of native and citric acid-enriched biochar of Chickpea straw in Cd and Pb sorption in an acidic soil. J Environ Chem Eng 7:103064. https://doi.org/10.1016/j.jece.2019.103064

    CAS  Article  Google Scholar 

  81. Neto BB, Scarminio IS, Bruns RE (2001) How to do experiments-research and development in science and industry. Publisher of Unicamp, Campinas in Portuguese

    Google Scholar 

  82. Nunes CDN, Mittelmann A (2009) Diseases of the Azevém. EMBRAPA Pelotas-RS (in Portuguese).

  83. Ofomaja AE (2007) Sorption dynamics and isotherm studies of methylene blue uptake on to palm kernel fibre. Chem Eng J 126:35–43. https://doi.org/10.1016/j.cej.2006.08.022

    CAS  Article  Google Scholar 

  84. Orfão JJM, Antunes FJA, Figueiredo JL (1999) Pyrolysis kinetics of lignocellulosic materials–three independent reactions model. Fuel 78:349–358. https://doi.org/10.1016/S0016-2361(98)00156-2

    Article  Google Scholar 

  85. Pandey LM (2019) Enhanced adsorption capacity of designed bentonite and alginate beads for the effective removal of methylene blue. Appl Clay Sci 169:102–111. https://doi.org/10.1016/j.clay.2018.12.019

    CAS  Article  Google Scholar 

  86. Park MH, Jeong S, Kim JY (2019) Adsorption of NH3–N onto rice straw-derived biochar. J Environ Chem Eng 7(2):103039. https://doi.org/10.1016/j.jece.2019.103039

    CAS  Article  Google Scholar 

  87. Paul A, Joseph K, Thomas S (1997) Effect of surface treatment on the electrical properties of the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Compos Sci Tecnol 57:67–79. https://doi.org/10.1016/S0266-3538(96)00109-1

    CAS  Article  Google Scholar 

  88. Paula PG, Rodríguez RJ, Duarte LPR, Candido VS, Monteiro SN (2014) Formulation and characterization of composites with vegetal fibers and formulation and characterization of polypropylene composites alkali treated bagasse fiber. Mater Sci Forum 775–776:319–324. https://doi.org/10.4028/www.scientific.net/MSF.775-776.319.

    Article  Google Scholar 

  89. Pérez-Marín AB, Zapata VM, Ortuño JF, Aguilar M, Sáez J, Lloréns M (2007) Removal of cadmium from aqueous solutions by adsorption onto orange waste. J Hazard Mater B139:122–131. https://doi.org/10.1016/j.jhazmat.2006.06.008

    CAS  Article  Google Scholar 

  90. Pezoti O Jr, Almeida VC, Cazetta AL, Souza IPAF, Bedin KC, Martins AC, Silva TL (2014) Adsorption studies of methylene blue onto ZnCl2-activated carbon produced from buriti shells (Mauritia flexuosa L). J Ind Eng Chem 20:4401–4407. https://doi.org/10.1016/j.jiec.2014.02.007

    CAS  Article  Google Scholar 

  91. Ponnusami V, Vikram S, Srivastava SN (2008) Guava (Psidium guajava) leaf powder : novel adsorbent for removal of methylene blue from aqueous solutions. J Hazard Mater 152:276–286. https://doi.org/10.1016/j.jhazmat.2007.06.107

    CAS  Article  Google Scholar 

  92. Rahnama N, Foo HL, Shah UK, Ariff A (2013) Effect of alkali pretreatment of rice straw on cellulase and xylanase production by local trichoderma harzianum SNRS3 under solid state fermentation. BioResources 8(2):2881–2896

    Article  Google Scholar 

  93. Rao YH (2013) Characterization and defluoridation studies of active carbons derived from bio materials of Typha angustata Lagenaria siceraria and Acacia farnesiana plants as adsorbents. Thesis, Acharya Nagarjuna University, p 276

  94. Ray D, Sarkar BK, Rana AK, Bose NR (2001) The mechanical properties of vinylester resin matrix composites reinforced with alkali-treated jute fibres. Compos A 32:119–127. https://doi.org/10.1016/S1359-835X(00)00101-9.

    CAS  Article  Google Scholar 

  95. Ribeiro PB, Freitas VO, Machry K, Muniz ARC, Rosa GS (2018) Evaluation of the potential of coal fly ash produced by gasification as hexavalent chromium adsorbent. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-3852-7

    Article  Google Scholar 

  96. Rodríguez-Reinoso F, Molina-Sabio M (1998) Textural and chemical characterization of microporous carbons. Adv Coll Interface Sci 76–77:271–294. https://doi.org/10.1016/S0001-8686(98)00049-9

    Article  Google Scholar 

  97. Rohella RS, Sahoo N, Paul SC, Choudhury S, Chakravortty V (1996) Thermal studies on isolated and purified lignin. Thermochim Acta 287:131–138. https://doi.org/10.1016/0040-6031(96)02983-8

    CAS  Article  Google Scholar 

  98. Rovani S, Rodrigues AG, Medeiros LF, Cataluña R, Lima EC, Fernandes AN (2016) Synthesis and characterisation of activated carbon from agroindustrial waste—preliminary study of 17 b -estradiol removal from aqueous solution. J Environ Chem Eng 4:2128–2137. https://doi.org/10.1016/j.jece.2016.03.030

    CAS  Article  Google Scholar 

  99. Royer B, Cardoso NF, Lima EC, Vaghetti JCP, Simon NM, Calvete T, Veses RC (2009) Applications of Brazilian pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions-kinetic and equilibrium study. J Hazard Mater 164:1213–1222. https://doi.org/10.1016/j.jhazmat.2008.09.028

    CAS  Article  Google Scholar 

  100. Saadia M, Nazha O, Abdlemjid A, Ahmed B, M’hamed C (2012) Preparation and characterization of activated carbon from residues of oregano. J Surface Sci Technol 28(3–4):91–100. https://doi.org/10.18311/jsst/2012/1881

    CAS  Article  Google Scholar 

  101. Saravanan R, Aviles J, Gracia F, Mosquera E, Gupta VK (2018a) Crystallinity and lowering band gap induced visible light photocatalytic activity of TiO2/CS (Chitosan) nanocomposites. Int J Biol Macromol 109:1239–1245. https://doi.org/10.1016/j.ijbiomac.2017.11.125

    CAS  Article  Google Scholar 

  102. Saravanan R, Agarwal S, Gupta VK, Khan MM, Gracia F, Mosquera E, Narayanan V, Stephen A (2018b) Line defect Ce3+ induced Ag/CeO2/ZnO nanostructure for visible-light photocatalytic activity. J Photochem Photobiol A Chem 353:499–506. https://doi.org/10.1016/j.jphotochem.2017.12.011

    CAS  Article  Google Scholar 

  103. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    CAS  Article  Google Scholar 

  104. Sharma S, Hasan A, Kumar N, Pandey LM (2018) Removal of methylene blue dye from aqueous solution using immobilized Agrobacterium fabrum biomass along with iron oxide nanoparticles as biosorbent. Env Sci Pollut Res 25:21605–21615. https://doi.org/10.1007/s11356-018-2280-z

    CAS  Article  Google Scholar 

  105. Sips R (1948) On the structure of a catalyst surface. J Chem Phys. https://doi.org/10.1063/1.1746922

    Article  Google Scholar 

  106. Sun Y, Webley PA (2010) Preparation of activated carbons from corncob with large specific surface area by a variety of chemical activators and their application in gas storage. Chem Eng J 162:883–892. https://doi.org/10.1016/j.cej.2010.06.031

    CAS  Article  Google Scholar 

  107. Tan X, Liu Y, Gu Y, Liu S, Zeng G, Cai X, Hu X, Wang H, Liu S, Jiang L (2016) Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass (Boehmeria nivea (L.) Gaud.): characterization and application for crystal violet removal. J Environ Manag 184:85–93. https://doi.org/10.1016/j.jenvman.2016.08.070

    CAS  Article  Google Scholar 

  108. Temkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta USSR 12:327–356

    CAS  Google Scholar 

  109. Uddin T, Islam A, Mahmud S (2009) Adsorptive removal of methylene blue by tea waste. J Hazard Mater 164:53–60. https://doi.org/10.1016/j.jhazmat.2008.07.131

    CAS  Article  Google Scholar 

  110. Vaghetti JCP, Lima EC, Royer B, Cunha BM, Cardoso NF, Brasil JL, Dias SLP (2009) Pecan nutshell as biosorbent to remove Cu (II), Mn(II) and Pb(II) from aqueous solutions. J Hazard Mater 162:270–280. https://doi.org/10.1016/j.jhazmat.2008.05.039

    CAS  Article  Google Scholar 

  111. Valix M, Cheung WH, McKay G (2006) Roles of the textural and surface chemical properties of activated carbon in the adsorption of acid blue dye. Langmuir 22(10):4574–4582. https://doi.org/10.1021/la051711j

    CAS  Article  Google Scholar 

  112. Vamvuka D, Kakaras E (2011) Ash properties and environmental impact of various biomass and coal fuels and their blends. Fuel Process Technol 92(3):570–581. https://doi.org/10.1016/j.fuproc.2010.11.013

    CAS  Article  Google Scholar 

  113. Vargas AMM, Cazetta AL, Kunita MH, Silva TL, Almeida VC (2011) Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): study of adsorption isotherms and kinetic models. Chem Eng J 168:722–730. https://doi.org/10.1016/j.cej.2011.01.067

    CAS  Article  Google Scholar 

  114. Wang Z, Gou Y, Yu K, Xu H (2003) Effects of activation conditions on preparation of porous carbon from rice husk. Carbon 41:1645–1687. https://doi.org/10.1016/S0008-6223(03)00084-8

    CAS  Article  Google Scholar 

  115. Wang S, Gao B, Zimmerman AR, Li Y, Ma L, Harris WG, Migliaccio KW (2015) Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Chemosphere 134:257–262. https://doi.org/10.1016/j.chemosphere.2015.04.062

    CAS  Article  Google Scholar 

  116. Wang Z, Han L, Sun K, Jin J, Ro KS, Libra JA, Liu X, Xing B (2016) Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures. Chemosphere 144:265–291. https://doi.org/10.1016/j.chemosphere.2015.08.042

    CAS  Article  Google Scholar 

  117. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng 89:31–60

    Google Scholar 

  118. Williams PT, Reed AR (2004) High grade activated carbon matting derived from the chemical activation and pyrolysis of natural fibre textile waste. J Anal Appl Pyrolysis 71:971–986. https://doi.org/10.1016/j.jaap.2003.12.007

    CAS  Article  Google Scholar 

  119. Wu Y, Zhang L, Gao C, Ma J, Ma X, Han R (2009) Adsorption of copper ions and methylene blue in a single and binary system on wheat straw. J Chem Eng Data 54:3229–3234. https://doi.org/10.1021/je900220q

    CAS  Article  Google Scholar 

  120. Xie X, Gao H, Luo X, Su T, Zhang Y, Qin Z (2019) Polyethyleneimine modified activated carbon for adsorption of Cd (II) in aqueous solution. J Environ Chem Eng 7:2213–3437. https://doi.org/10.1016/j.jece.2019.103183

    CAS  Article  Google Scholar 

  121. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    CAS  Article  Google Scholar 

  122. Yang HI, Lou K, Rajapaksha AU, Ok YS (2018) Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars. Environ Sci Pollut Res 25(2018):25638–25647. https://doi.org/10.1007/s11356-017-8551-2

    CAS  Article  Google Scholar 

  123. Yu J, Wang L, Chi R, Zhang Y, Xu Z, Guo J (2013) A simple method to prepare magnetic modified beer yeast and its application for cationic dye adsorption. Environ Sci Pollut Res 20:543–551

    CAS  Article  Google Scholar 

  124. Zubieta CE, Messina PV, Luengo C, Dennehy M, Pieroni O, Schulz PC (2008) Reactive dyes remotion by porous TiO2-chitosan materials. J Hazard Mater 152(2):765–777. https://doi.org/10.1016/j.jhazmat.2007.07.043

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all who assisted in conducting this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. O. da Silva.

Additional information

Editorial responsibility: R Saravanan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Silva, E.O., dos Santos, V.D., de Araujo, E.B. et al. Removal of methylene blue from aqueous solution by ryegrass straw. Int. J. Environ. Sci. Technol. 17, 3723–3740 (2020). https://doi.org/10.1007/s13762-020-02718-9

Download citation

Keywords

  • Adsorption isotherms
  • Adsorption kinetics
  • Biochar
  • Chemical activation
  • Dyes
  • Treated straw