Silver-loaded biomass (Delonix regia) with anti-bacterial properties as porous carbon composite towards comprehensive water purification

Abstract

Greener and cost-effective activated carbon material with antimicrobial property may be a captivating alternative to biofouling prone commercial activated carbon. In this view, a green composite was prepared by fabricating surface of the carbon obtained from pods of Delonix regia (DRP), using green silver nanoparticles. These green silver nanoparticles exhibited ease of preparation and eco-friendlier nature, providing unique and desired combination of structure–function relationship. The aqueous leaf extract of Tabernaemontana divaricata was used as a green reducing/stabilizing agent. The prepared composite was characterized through standard morphological and chemical characterization techniques, and its potential applications for treatment of various biological and organic contaminants in wastewater were investigated. A removal efficiency of ~ 98–99% and 97.6% was achieved for Bacillus subtilis and Escherichia coli cells, respectively. To understand the plausible anti-bacterial mechanism, standard biochemical assays were performed. Further, removal of Candida albicans, biological load reduction in two natural lakes and dye removal studies were undertaken. The composite exhibited a broad range and comparatively higher antimicrobial activity than the nascent DRP. Green carbon composite could also successfully treat both cationic and anionic dyes. Thus, the fabrication of nascent carbon surface with green silver nanoparticles in preparation of the composite proved as an efficient strategy in the development of a multifunctional material with wide range of antimicrobial activity. The prepared composite may thus be a promising material for effective wastewater treatment with good potential for removal of both microbial and chemical contaminants for safe water disinfection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Akerdi AG, Bahrami SH, Arami M, Pajootan E (2016) Photocatalytic discoloration of Acid Red 14 aqueous solution using titania nanoparticles immobilized on graphene oxide fabricated plate. Chemosphere 159:293–299. https://doi.org/10.1016/j.chemosphere.2016.06.020

    CAS  Article  Google Scholar 

  2. Ali A, Gul A, Mannan A, Zia M (2018) Efficient metal adsorption and microbial reduction from Rawal Lake wastewater using metal nanoparticle coated cotton. Sci Total Environ 639:26–39. https://doi.org/10.1016/j.scitotenv.2018.05.133

    CAS  Article  Google Scholar 

  3. Al-Majdoub ZM, Owoseni A, Gaskell SJ, Barber J (2013) Effects of gentamicin on the proteomes of aerobic and oxygen-limited Escherichia coli. J Med Chem. https://doi.org/10.1021/jm301858u

    Article  Google Scholar 

  4. Begum NA, Mondal S, Basu S et al (2009) Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloids Surf B Biointerfaces 71:113–118. https://doi.org/10.1016/j.colsurfb.2009.01.012

    CAS  Article  Google Scholar 

  5. Bellissima F, Bonini M, Giorgi R et al (2014) Antibacterial activity of silver nanoparticles grafted on stone surface. Environ Sci Pollut Res 21:13278–13286. https://doi.org/10.1007/s11356-013-2215-7

    CAS  Article  Google Scholar 

  6. Bury PDS, Huang F, Li S et al (2017) Structural basis of the selectivity of GenN, an aminoglycoside N-methyltransferase involved in gentamicin biosynthesis. ACS Chem Biol 12:2779–2787. https://doi.org/10.1021/acschembio.7b00466

    CAS  Article  Google Scholar 

  7. Cantarella M, Sanz R, Buccheri MA et al (2016) Immobilization of nanomaterials in PMMA composites for photocatalytic removal of dyes, phenols and bacteria from water. J Photochem Photobiol A Chem 321:1–11. https://doi.org/10.1016/j.jphotochem.2016.01.020

    CAS  Article  Google Scholar 

  8. Chandraker K, Nagwanshi R, Jadhav SK et al (2017) Antibacterial properties of amino acid functionalized silver nanoparticles decorated on graphene oxide sheets. Spectrochim Acta Part A Mol Biomol Spectrosc 181:47–54. https://doi.org/10.1016/j.saa.2017.03.032

    CAS  Article  Google Scholar 

  9. Das SK, Khan MMR, Guha AK et al (2012) Silver-nano biohybride material: synthesis, characterization and application in water purification. Bioresour Technol 124:495–499. https://doi.org/10.1016/j.biortech.2012.08.071

    CAS  Article  Google Scholar 

  10. de Aragão AP, de Oliveira TM, Quelemes PV et al (2016) Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arab J Chem. https://doi.org/10.1016/j.arabjc.2016.04.014

    Article  Google Scholar 

  11. Elango G, Roopan SM (2015) Green synthesis, spectroscopic investigation and photocatalytic activity of lead nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 139:367–373. https://doi.org/10.1016/j.saa.2014.12.066

    CAS  Article  Google Scholar 

  12. El-Said WA, Fouad DM, Ali MH, El-Gahami MA (2018) Green synthesis of magnetic mesoporous silica nanocomposite and its adsorptive performance against organochlorine pesticides. Int J Environ Sci Technol 15:1731–1744. https://doi.org/10.1007/s13762-017-1530-9

    CAS  Article  Google Scholar 

  13. Eren T, Atar N, Yola ML et al (2015) Facile and green fabrication of silver nanoparticles on a polyoxometalate for Li-ion battery. Ionics (Kiel). https://doi.org/10.1007/s11581-015-1409-z

    Article  Google Scholar 

  14. Fan M, Gong L, Huang Y et al (2018) Facile preparation of silver nanoparticle decorated chitosan cryogels for point-of-use water disinfection. Sci Total Environ 613–614:1317–1323. https://doi.org/10.1016/j.scitotenv.2017.09.256

    CAS  Article  Google Scholar 

  15. Fatimah I (2016) Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation. J Adv Res 7:961–969. https://doi.org/10.1016/j.jare.2016.10.002

    CAS  Article  Google Scholar 

  16. Gupta VK, Atar N, Yola ML et al (2013) Biosynthesis of silver nanoparticles using chitosan immobilized Bacillus cereus: nanocatalytic studies. J Mol Liq 188:81–88. https://doi.org/10.1016/j.molliq.2013.09.021

    CAS  Article  Google Scholar 

  17. Gurunathan S, Kalishwaralal K, Vaidyanathan R et al (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces 74:328–335. https://doi.org/10.1016/j.colsurfb.2009.07.048

    CAS  Article  Google Scholar 

  18. Jin L, Sun Q, Xu Q, Xu Y (2015) Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine. Bioresour Technol 197:348–355. https://doi.org/10.1016/j.biortech.2015.08.093

    CAS  Article  Google Scholar 

  19. Ju X, Hou J, Tang Y et al (2016) ZrO2 nanoparticles confined in CMK-3 as highly effective sorbent for phosphate adsorption. Microporous Mesoporous Mater 230:188–195. https://doi.org/10.1016/j.micromeso.2016.05.002

    CAS  Article  Google Scholar 

  20. Karthik C, Radha KV (2016) Silver nanoparticle loaded activated carbon: an escalated nanocomposite with antimicrobial property. Orient J Chem 32:735–741. https://doi.org/10.13005/ojc/320182

    CAS  Article  Google Scholar 

  21. Khalilzadeh MA, Borzoo M (2016) Green synthesis of silver nanoparticles using onion extract and their application for the preparation of a modified electrode for determination of ascorbic acid. J Food Drug Anal 24:796–803. https://doi.org/10.1016/j.jfda.2016.05.004

    CAS  Article  Google Scholar 

  22. Khan AU, Yuan Q, Wei Y et al (2016a) Ultra-efficient photocatalytic deprivation of methylene blue and biological activities of biogenic silver nanoparticles. J Photochem Photobiol B Biol 159:49–58. https://doi.org/10.1016/j.jphotobiol.2016.03.017

    CAS  Article  Google Scholar 

  23. Khan ZUH, Khan A, Shah A et al (2016b) Photocatalytic, antimicrobial activities of biogenic silver nanoparticles and electrochemical degradation of water soluble dyes at glassy carbon/silver modified past electrode using buffer solution. J Photochem Photobiol B Biol 156:100–107. https://doi.org/10.1016/j.jphotobiol.2016.01.016

    CAS  Article  Google Scholar 

  24. Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 176061:151–157. https://doi.org/10.1002/jctb.2023

    CAS  Article  Google Scholar 

  25. Lawrie K, Mills A, Figueredo-Fernández M et al (2015) UV dosimetry for solar water disinfection (SODIS) carried out in different plastic bottles and bags. Sens Actuators B Chem 208:608–615. https://doi.org/10.1016/j.snb.2014.11.031

    CAS  Article  Google Scholar 

  26. Li Y, Meas A, Shan S et al (2016) Production and optimization of bamboo hydrochars for adsorption of Congo red and 2-naphthol. Bioresour Technol 207:379–386. https://doi.org/10.1016/j.biortech.2016.02.012

    CAS  Article  Google Scholar 

  27. Lin JT, Connelly MB, Amolo C et al (2005) Global transcriptional response of Bacillus subtilis to treatment with subinhibitory concentrations of antibiotics that inhibit protein synthesis. Antimicrob Agents Chemother 49:1915–1926. https://doi.org/10.1128/AAC.49.5.1915

    CAS  Article  Google Scholar 

  28. Louis MR, Sorokhaibam LG, Bhandari VM, Bundale S (2018) Multifunctional activated carbon with antimicrobial property derived from Delonix regia biomaterial for treatment of wastewater. J Environ Chem Eng 6:169–181. https://doi.org/10.1016/j.jece.2017.11.056

    CAS  Article  Google Scholar 

  29. Lu D, Chai W, Yang M et al (2016) Visible light induced photocatalytic removal of Cr(VI) over TiO2-based nanosheets loaded with surface-enriched CoOx nanoparticles and its synergism with phenol oxidation. Appl Catal B Environ 190:44–65. https://doi.org/10.1016/j.apcatb.2016.03.003

    CAS  Article  Google Scholar 

  30. Moritz M, Geszke-Moritz M (2013) The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem Eng J 228:596–613. https://doi.org/10.1016/j.cej.2013.05.046

    CAS  Article  Google Scholar 

  31. Nasiriboroumand M, Montazer M, Barani H (2018) Preparation and characterization of biocompatible silver nanoparticles using pomegranate peel extract. J Photochem Photobiol B Biol 179:98–104. https://doi.org/10.1016/j.jphotobiol.2018.01.006

    CAS  Article  Google Scholar 

  32. Osonga FJ, Kariuki VM, Yazgan I et al (2016) Synthesis and antibacterial characterization of sustainable nanosilver using naturally-derived macromolecules. Sci Total Environ 563–564:977–986. https://doi.org/10.1016/j.scitotenv.2015.12.064

    CAS  Article  Google Scholar 

  33. Otari SV, Patil RM, Nadaf NH et al (2012) Green biosynthesis of silver nanoparticles from an actinobacteria Rhodococcus sp. Mater Lett 72:92–94. https://doi.org/10.1016/j.matlet.2011.12.109

    CAS  Article  Google Scholar 

  34. Painuli R, Joshi P, Kumar D (2018) Cost-effective synthesis of bifunctional silver nanoparticles for simultaneous colorimetric detection of Al(III) and disinfection. Sens Actuators B Chem 272:79–90. https://doi.org/10.1016/j.snb.2018.05.131

    CAS  Article  Google Scholar 

  35. Parandhaman T, Das A, Ramalingam B et al (2015) Antimicrobial behavior of biosynthesized silica–silver nanocomposite for water disinfection: a mechanistic perspective. J Hazard Mater 290:117–126. https://doi.org/10.1016/j.jhazmat.2015.02.061

    CAS  Article  Google Scholar 

  36. Patra JK, Das G, Baek K-H (2016) Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy. J Photochem Photobiol B Biol 161:200–210. https://doi.org/10.1016/j.jphotobiol.2016.05.021

    CAS  Article  Google Scholar 

  37. Pinto RJB, Marques PAAP, Neto CP et al (2009) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater 5:2279–2289. https://doi.org/10.1016/j.actbio.2009.02.003

    CAS  Article  Google Scholar 

  38. Plachtová P, Medříková Z, Zbořil R et al (2018) Iron and iron oxide nanoparticles synthesized using green tea extract: differences in ecotoxicological profile and ability to degrade malachite green.  Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.8b00986

    Article  Google Scholar 

  39. Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112:841–852. https://doi.org/10.1111/j.1365-2672.2012.05253.x

    CAS  Article  Google Scholar 

  40. Ramalingam B, Khan MMR, Mondal B et al (2015) Facile synthesis of silver nanoparticles decorated magnetic-chitosan microsphere for efficient removal of dyes and microbial contaminants. ACS Sustain Chem Eng 3:2291–2302. https://doi.org/10.1021/acssuschemeng.5b00577

    CAS  Article  Google Scholar 

  41. Rasheed T, Bilal M, Iqbal HMN, Li C (2017) Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids Surf B Biointerfaces 158:408–415. https://doi.org/10.1016/j.colsurfb.2017.07.020

    CAS  Article  Google Scholar 

  42. Rostami-Vartooni A, Nasrollahzadeh M, Salavati-Niasari M, Atarod M (2016) Photocatalytic degradation of azo dyes by titanium dioxide supported silver nanoparticles prepared by a green method using Carpobrotus acinaciformis extract. J Alloys Compd 689:15–20. https://doi.org/10.1016/j.jallcom.2016.07.253

    CAS  Article  Google Scholar 

  43. Sadhasivam S, Shanmugam P, Yun K (2010) Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B Biointerfaces 81:358–362. https://doi.org/10.1016/j.colsurfb.2010.07.036

    CAS  Article  Google Scholar 

  44. Sebastian M, Aravind A, Mathew B (2019) Green silver nanoparticles based multi-technique sensor for environmental hazardous Cu(II) ion. Bionanoscience 9:373–385. https://doi.org/10.1007/s12668-019-0608-x

    Article  Google Scholar 

  45. Shao W, Liu X, Min H et al (2015) Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl Mater Interfaces 7:6966–6973. https://doi.org/10.1021/acsami.5b00937

    CAS  Article  Google Scholar 

  46. Sim KM, Kim KH, Hwang GB et al (2014) Development and evaluation of antimicrobial activated carbon fiber filters using Sophora flavescens nanoparticles. Sci Total Environ 493:291–297. https://doi.org/10.1016/j.scitotenv.2014.06.002

    CAS  Article  Google Scholar 

  47. Singh RK, Babu V, Philip L, Ramanujam S (2016) Disinfection of water using pulsed power technique: effect of system parameters and kinetic study. Chem Eng J 284:1184–1195. https://doi.org/10.1016/j.cej.2015.09.019

    CAS  Article  Google Scholar 

  48. Singhal A, Gupta A (2018) Efficient utilization of Sal deoiled seed cake (DOC) as reducing agent in synthesis of silver nanoparticles: application in treatment of dye containing wastewater and harnessing reusability potential for cost-effectiveness. J Mol Liq 268:691–699. https://doi.org/10.1016/j.molliq.2018.07.092

    CAS  Article  Google Scholar 

  49. Sivaraj R, Rahman PKSM, Rajiv P et al (2014) Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen. Spectrochim Acta Part A Mol Biomol Spectrosc 133:178–181. https://doi.org/10.1016/j.saa.2014.05.048

    CAS  Article  Google Scholar 

  50. Surudžić R, Janković A, Bibić N et al (2016) Physico-chemical and mechanical properties and antibacterial activity of silver/poly(vinyl alcohol)/graphene nanocomposites obtained by electrochemical method. Compos Part B 85:102–112. https://doi.org/10.1016/j.compositesb.2015.09.029

    CAS  Article  Google Scholar 

  51. Tahir K, Nazir S, Li B et al (2015) Enhanced visible light photocatalytic inactivation of Escherichia coli using silver nanoparticles as photocatalyst. J Photochem Photobiol B Biol 153:261–266. https://doi.org/10.1016/j.jphotobiol.2015.09.015

    CAS  Article  Google Scholar 

  52. Tang C, Sun W, Yan W (2014) Green and facile fabrication of silver nanoparticles loaded activated carbon fibers with long-lasting antibacterial activity. RSC Adv 4:523–530. https://doi.org/10.1039/c3ra44799e

    CAS  Article  Google Scholar 

  53. Tang C, Bai H, Liu L et al (2016) A green approach assembled multifunctional Ag/AgBr/TNF membrane for clean water production & disinfection of bacteria through utilizing visible light. Appl Catal B Environ 196:57–67. https://doi.org/10.1016/j.apcatb.2016.05.023

    CAS  Article  Google Scholar 

  54. Tang C, Hu D, Cao Q et al (2017) Silver nanoparticles-loaded activated carbon fibers using chitosan as binding agent: preparation, mechanism, and their antibacterial activity. Appl Surf Sci 394:457–465. https://doi.org/10.1016/j.apsusc.2016.10.095

    CAS  Article  Google Scholar 

  55. Taruna Kaushal J, Bhatti J, Kumar P (2016) Green synthesis and physico-chemical study of silver nanoparticles extracted from a natural source Luffa acutangula. J Mol Liq 224:991–998. https://doi.org/10.1016/j.molliq.2016.10.065

    CAS  Article  Google Scholar 

  56. Thamilselvi V, Radha KV (2017) Silver nanoparticle loaded corncob adsorbent for effluent treatment. J Environ Chem Eng 5:1843–1854

    CAS  Article  Google Scholar 

  57. Tran PA, Hocking DM, O’Connor AJ (2015) In situ formation of antimicrobial silver nanoparticles and the impregnation of hydrophobic polycaprolactone matrix for antimicrobial medical device applications. Mater Sci Eng, C 47:63–69. https://doi.org/10.1016/j.msec.2014.11.016

    CAS  Article  Google Scholar 

  58. Tuan TQ, Van Son N, Dung HTK et al (2011) Preparation and properties of silver nanoparticles loaded in activated carbon for biological and environmental applications. J Hazard Mater 192:1321–1329. https://doi.org/10.1016/j.jhazmat.2011.06.044

    CAS  Article  Google Scholar 

  59. Vigneshwaran N, Kathe AA, Varadarajan PV et al (2007) Silver-protein (core-shell) nanoparticle production using spent mushroom substrate. Langmuir 23:7113–7117. https://doi.org/10.1021/la063627p

    CAS  Article  Google Scholar 

  60. Vijayakumar PS, Prasad BLV (2009) Intracellular biogenic silver nanoparticles for the generation of carbon supported antiviral and sustained bactericidal agents. Langmuir 25:11741–11747. https://doi.org/10.1021/la901024p

    CAS  Article  Google Scholar 

  61. Vilchis-Nestor AR, Trujillo-Reyes J, Colín-Molina JA et al (2014) Biogenic silver nanoparticles on carbonaceous material from sewage sludge for degradation of methylene blue in aqueous solution. Int J Environ Sci Technol 11:977–986. https://doi.org/10.1007/s13762-013-0309-x

    CAS  Article  Google Scholar 

  62. Villanueva-Ibáñez M, Yañez-Cruz MG, Álvarez-García R et al (2015) Aqueous corn husk extract–mediated green synthesis of AgCl and Ag nanoparticles. Mater Lett 152:166–169

    Article  Google Scholar 

  63. Wei X, Zhou H, Xu L et al (2014) Sunlight-induced biosynthesis of silver nanoparticles by animal and fungus biomass and their characterization. J Chem Technol Biotechnol 89:305–311. https://doi.org/10.1002/jctb.4124

    CAS  Article  Google Scholar 

  64. Xiao G, Zhang X, Zhang W et al (2015) Visible-light-mediated synergistic photocatalytic antimicrobial effects and mechanism of Ag-nanoparticles@chitosan–TiO2 organic–inorganic composites for water disinfection. Appl Catal B Environ 170:255–262. https://doi.org/10.1016/j.apcatb.2015.01.042

    CAS  Article  Google Scholar 

  65. Yola ML, Eren T, Atar N, Wang S (2014) Adsorptive and photocatalytic removal of reactive dyes by silver nanoparticle-colemanite ore waste. Chem Eng J 242:333–340. https://doi.org/10.1016/j.cej.2013.12.086

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Sophisticated Analytical Instrumentation Facility (SAIF) center, Panjab University, SAIF, IIT Madras, SAIF STIC, Cochin, SAEF, NEERI, Nagpur and SICART Gujarat for various material characterization support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. G. Sorokhaibam.

Additional information

Editorial responsibility: J. Aravind.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Louis, M.R., Sorokhaibam, L.G., Chaudhary, S.K. et al. Silver-loaded biomass (Delonix regia) with anti-bacterial properties as porous carbon composite towards comprehensive water purification. Int. J. Environ. Sci. Technol. 17, 2415–2432 (2020). https://doi.org/10.1007/s13762-019-02528-8

Download citation

Keywords

  • Activated carbon
  • Antimicrobial activity
  • Dyes
  • Green silver nanoparticles
  • Lake water