Skip to main content
Log in

A flexible Schiff base probe for spectrophotometric detection of chromium (III)

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

A new Schiff base chemosensor (2,2′-(1E,1′E)-(hexane-1,6-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)diphenol) was synthesized (denoted as C6) and characterized by NMR, ESI–MS and FTIR analysis. C6 was screened against several toxic and hazardous materials including heavy metals via spectrophotometry, and Cr+3 was found to produce a distinctive hyperchromic shift in the absorbance of C6. Further analytical evaluation to decipher the supramolecular interaction between C6 and Cr+3 showed that C6 acted as selective chemosensor and exhibited high sensitivity toward Cr+3 in the presence of a wide range of other metal ions. The limit of detection for Cr+3 by using C6 via spectrophotometric detection was found to be around 10 µM. Furthermore, a chemosensing protocol was successfully utilized to recognize Cr+3 in real samples of tap water. Hence, C6 provides a rapid, sensitive and robust method for the detection and possible removal of Cr+3 from aqueous solution and holds potential for its monitoring in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdou AA (2013) Spectrophotometric determination of chromium (III) in Egyptian ilmenite from phosphate solution using Egyptian white sand (EWS) as a selective adsorbent. Afr J Pure Appl Chem 7:1–11

    CAS  Google Scholar 

  • Anwar A, Shah MR, Muhammad SP, Ali K, Khan NA (2018) Synthesis of 4-formyl pyridinium propylthioacetate stabilized silver nanoparticles and their application in chemosensing of 6-aminopenicillanic acid (APA). Int J Environ Sci Technol 2018:1–8

    Google Scholar 

  • Behbahani M, Taghizadeh M, Bagheri A, Hosseini H, Salarian M, Tootoonchi A (2012) A nanostructured ion-imprinted polymer for the selective extraction and preconcentration of ultra-trace quantities of nickel ions. Microchim Acta 178:429–437

    Article  CAS  Google Scholar 

  • Bhalla V, Tejpal R, Kumar M, Sethi A (2009) Terphenyl derivatives as “turn on” fluorescent sensors for mercury. Inorg Chem 48:11677–11684

    Article  CAS  Google Scholar 

  • Collins EM, McKervey MA, Madigan E, Moran MB, Owens M, Ferguson G, Harris SJ (1991) Chemically modified calix [4] arenes. Regioselective synthesis of 1, 3-(distal) derivatives and related compounds. X-Ray crystal structure of a diphenol-dinitrile. J Chem Soc Perkin Trans 1:3137–3142

    Article  Google Scholar 

  • Cozzi PG (2004) Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem Soc Rev 33:410–421

    Article  CAS  Google Scholar 

  • Dai J, Ren F, Tao C (2012) Adsorption of Cr(VI) and speciation of Cr(VI) and Cr(III) in aqueous solutions using chemically modified chitosan. Int J Environ Res Public Health 9:1757–1770

    Article  CAS  Google Scholar 

  • Dhal B, Thatoi H, Das N, Pandey B (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater 250:272–291

    Article  CAS  Google Scholar 

  • Dong C, Wu G, Wang Z, Ren W, Zhang Y, Shen Z, Li T, Wu A (2016) Selective colorimetric detection of Cr(III) and Cr(VI) using gallic acid capped gold nanoparticles. Dalton Trans 45:8347–8354

    Article  CAS  Google Scholar 

  • Ganjali MR, Norouzi P, Faridbod F, Ghorbani M, Adib M (2006) Highly selective and sensitive chromium (III) membrane sensors based on a new tridentate Schiff’s base. Anal Chim Acta 569:35–41

    Article  CAS  Google Scholar 

  • Gupta VK, Singh A, Gupta B (2006) A cerium (III) selective polyvinyl chloride membrane sensor based on a Schiff base complex of N, N′-bis [2-(salicylideneamino) ethyl] ethane-1, 2-diamine. Anal Chim Acta 575:198–204

    Article  CAS  Google Scholar 

  • Gupta VK, Singh AK, Gupta B (2007) Schiff bases as cadmium (II) selective ionophores in polymeric membrane electrodes. Anal Chim Acta 583:340–348

    Article  CAS  Google Scholar 

  • Habila M, Unsal YE, Alothman ZA, Shabaka A, Tuzen M, Soylak M (2015) Speciation of chromium in natural waters, tea, and soil with membrane filtration flame atomic absorption spectrometry. Anal Lett 48:2258–2271

    Article  CAS  Google Scholar 

  • Hashemi M, Daryanavard SM (2012) Ultrasound-assisted cloud point extraction for speciation and indirect spectrophotometric determination of chromium (III) and (VI) in water samples. Spectrochim Acta Part A Mol Biomol Spectrosc 92:189–193

    Article  CAS  Google Scholar 

  • H-M Jiang, Yang T, Y-h Wang, Lian H-Z HuX (2013) Magnetic solid-phase extraction combined with graphite furnace atomic absorption spectrometry for speciation of Cr(III) and Cr(VI) in environmental waters. Talanta 116:361–367

    Article  CAS  Google Scholar 

  • Huang Y-F, Li Y, Jiang Y, Yan X-P (2010) Magnetic immobilization of amine-functionalized magnetite microspheres in a knotted reactor for on-line solid-phase extraction coupled with ICP-MS for speciation analysis of trace chromium. J Anal Atom Spectrom 25:1467–1474

    Article  CAS  Google Scholar 

  • Jamaluddin AM, Reazul H (2011) A rapid spectrophotometric method for the determination of chromium in environmental samples using Bis (salicylaldehyde) orthophenylenediamine. Res J Chem Sci 1:46–59

    CAS  Google Scholar 

  • Johnson CP, Atwood JL, Steed JW, Bauer CB, Rogers RD (1996) Transition metal complexes of p-sulfonatocalix [5] arene. Inorg Chem 35:2602–2610

    Article  CAS  Google Scholar 

  • Jugade R, Joshi AP (2006) Highly sensitive adsorptive stripping voltammetric method for the ultra-trace determination of chromium (VI). Anal Sci 22:571–574

    Article  CAS  Google Scholar 

  • Katz SA, Salem H (1993) The toxicology of chromium with respect to its chemical speciation: a review. J Appl Toxicol 13:217–224

    Article  CAS  Google Scholar 

  • Keith C, Borazjani H, Diehl SV, Su Y, Baldwin B (2006) Removal of copper, chromium, and arsenic by water hyacinths. In: 36th Annual Mississippi water resources conference, pp 13–18

  • Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni C (1999) A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29:1–46

    Article  CAS  Google Scholar 

  • Leśniewska B, Godlewska-Żyłkiewicz B, Wilczewska AZ (2012) Separation and preconcentration of trace amounts of Cr(III) ions on ion imprinted polymer for atomic absorption determinations in surface water and sewage samples. Microchem J 105:88–93

    Article  CAS  Google Scholar 

  • Liu Y et al (2013) Speciation, adsorption and determination of chromium (III) and chromium (VI) on a mesoporous surface imprinted polymer adsorbent by combining inductively coupled plasma atomic emission spectrometry and UV spectrophotometry. J Sep Sci 36:3949–3957

    Article  CAS  Google Scholar 

  • López-García I, Briceño M, Vicente-Martínez Y, Hernández-Córdoba M (2013) Ultrasound-assisted dispersive liquid–liquid microextraction for the speciation of traces of chromium using electrothermal atomic absorption spectrometry. Talanta 115:166–171

    Article  CAS  Google Scholar 

  • Martin MT, Judson RS, Reif DM, Kavlock RJ, Dix DJ (2009) Profiling chemicals based on chronic toxicity results from the US EPA ToxRef Database. Environ Health Perspect 117:392–399

    Article  CAS  Google Scholar 

  • Meouche W, Branger C, Beurroies I, Denoyel R, Margaillan A (2012) Inverse suspension polymerization as a new tool for the synthesis of ion-imprinted polymers. Macromol Rapid Commun 33:928–932

    Article  CAS  Google Scholar 

  • Minhaz A, Ishaq M, Ahmad I, Ahmed F, Shah MR (2016) Highly selective supramolecular detection of pefloxacin with gold nanoparticles. Sensor Lett 14:310–318

    Article  Google Scholar 

  • Narin I, Soylak M, Kayakirilmaz K, Elci L, Dogan M (2002) Speciation of Cr(III) and Cr(VI) in tannery wastewater and sediment samples on Ambersorb 563 resin. Anal Lett 35:1437–1452

    Article  CAS  Google Scholar 

  • Safavi A, Maleki N, Shahbaazi H (2006) Indirect determination of hexavalent chromium ion in complex matrices by adsorptive stripping voltammetry at a mercury electrode. Talanta 68:1113–1119

    Article  CAS  Google Scholar 

  • Sari A, Mendil D, Tuzen M, Soylak M (2008) Biosorption of Cd (II) and Cr(III) from aqueous solution by moss (Hylocomium splendens) biomass: equilibrium, kinetic and thermodynamic studies. Chem Eng J 144:1–9

    Article  CAS  Google Scholar 

  • Singh AK, Gupta VK, Gupta B (2007) Chromium (III) selective membrane sensors based on Schiff bases as chelating ionophores. Anal Chim Acta 585:171–178

    Article  CAS  Google Scholar 

  • Soares R et al (2009) Simultaneous speciation of chromium by spectrophotometry and multicomponent analysis. Chem Spec Bioavailab 21:153–160

    Article  CAS  Google Scholar 

  • Verboom W, Durie A, Egberink RJ, Asfari Z, Reinhoudt DN (1992) Ipso nitration of p-tert-butylcalix [4] arenes. J Organ Chem 57:1313–1316

    Article  CAS  Google Scholar 

  • Vincent JB (2010) Chromium: celebrating 50 years as an essential element? Dalton Trans 39:3787–3794

    Article  CAS  Google Scholar 

  • Wilbur SB (2000) Toxicological profile for chromium. US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry

  • Zeng HH, Wu H, Peng D, Liu F, Shi WG, Qiu JD (2018) Fast and selective detection of Cr(III) in environmental water samples using phosphovanadate Y (V0. 2P0. 8O4): eu3 + fluorescence nanorods. ACS Sensors 3:1569–1575

    Article  CAS  Google Scholar 

  • Zhang H, Liu Q, Wang T, Yun Z, Li G, Liu J, Jiang G (2013) Facile preparation of glutathione-stabilized gold nanoclusters for selective determination of chromium (III) and chromium (VI) in environmental water samples. Anal Chim Acta 770:140–146

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Higher Education Commission, Pakistan (Case No. 106-2077-PS6-065) and H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Anwar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editorial responsibility: M. Abbaspour.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1037 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minhaz, A., Anwar, A., Ahmad, I. et al. A flexible Schiff base probe for spectrophotometric detection of chromium (III). Int. J. Environ. Sci. Technol. 16, 5577–5584 (2019). https://doi.org/10.1007/s13762-018-2103-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-2103-2

Keywords

Navigation