Skip to main content
Log in

Development of carrageenan modified with nanocellulose-based materials in removing of Cu2+, Pb2+, Ca2+, Mg2+, and Fe2+

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Different bio-polymeric matrixes of carrageenan and modified carrageenan with cellulosic nonmaterials were prepared in the form of beads. The nanocellulosic materials were prepared from dissolved bagasse pulp and include cellulose nanocrystals, cellulose nanofibers and tricarboxy cellulose nanofibers. The prepared bio-polymeric matrixes were characterized with transmission electron microscopy, FTIR, X-ray diffraction and scanning electron microscope. The capabilities of carrageenan and modified carrageenan beads to chelate with several metal cations were evaluated. Interestingly, the modification of carrageenan with cellulose nanoparticles obtained high efficiency toward removing Cu2+, Pb2+, Ca2+, Mg2+, and Fe2+. The modified carrageenan with tricarboxy cellulose nanofibers which has higher carboxylate content showed high removal efficiency rather than the other modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Car:

Carrageenan

CNC:

Cellulose nanocrystals

CNF:

Cellulose nanofibers

TC-CNF:

Tricarboxy cellulose nanofibers

TEM:

Transmission electron microscopy

XRD:

X-ray diffraction

SEM:

Scanning electron microscope

References

  • Abou-Zeid RE, Hassan EA, Bettaib F, Khiari R, Hassan ML (2015) Use of cellulose and oxidized cellulose nanocrystals from olive stones in chitosan bionanocomposites. J Nanomater. Article ID 687490, 1-11

  • Ali KA, Haroun AA, Abd El-Moez SI (2013) Synthesis and antimicrobial activity of gelatin-thiazolidine derivative based monohybrids. In: CIMDD conference at Algeria: May 6th to 9th, 2013. Universite´M’Hamed Bougara Boumerdes

  • Ali KA, Hassan ME, Elnashar MMM (2017) Development of functionalized carrageenan, chitosan and alginate, as polymeric chelating ligands for water softening. Int J Environ Sci Technol 14:2009–2014

    Article  CAS  Google Scholar 

  • Da Silva Perez D, Montanari S, Vignon MR (2003) TEMPO mediated oxidation of cellulose III. Biomacromol 4:1417–1425

    Article  CAS  Google Scholar 

  • Dufresne A (2009) Polymer nanocomposites from biological sources. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol 10. American Scientific Publishers, California, pp 1–32

    Google Scholar 

  • Elnashar MM, Hassan ME (2014) Novel epoxy activated hydrogelsfor solving lactose intolerance. Biomed Res Int Ilka, Article ID 817985

  • El-Sakhawy M, Kamel S, Salama A, Youssef MA, Elsaid W, Tohamy H (2017) Amphiphilic cellulose as stabilizer for oil/water emulsion. Egypt J Chem 60(2):181–204

    Article  Google Scholar 

  • El-Sayed MMH, Hani HA, Sorour MH (2014) Polymeric ion exchangers for the recovery of ions from brine and seawater. Chem Eng Process Tech 2(1):1020

    Google Scholar 

  • Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1–17

    Article  CAS  Google Scholar 

  • Hassan ML, Abou-Zeid RE, Fadel SM, El-Sakhawy MM, Khairi R (2014) Cellulose nanocrystals and carboxymethyl cellulose from olive stones and their use to improve paper sheets properties. Int J Nanoparticles 7(3–4):261–277

    Article  Google Scholar 

  • Hori R, Wada M (2006) The thermal expansion of cellulose II and III crystals. Cellulose 13:281–290

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85

    Article  CAS  Google Scholar 

  • Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibers and nanocrystals from rice husk. Ind Crops Prod 37:93–99

    Article  CAS  Google Scholar 

  • Kamel SK, Abou-Yousef H, Yousef M (2012) Potential uses of bagasse and modified bagasse for removal of iron and phenol from water. Carbohydr Polym 88:250–256

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 36:3358–3393

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Liimatainen H, Visanko M, Sirvio JA et al (2012) Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation. Biomacromol 13:1592–1597. https://doi.org/10.1021/bm300319m

    Article  CAS  Google Scholar 

  • Mccarthy SP (2003) Biodegradable polymers. In: Andrady AL (ed) Plastics and the environment. Wiley, New York, pp 359–377

    Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8(8):2485–2491

    Article  CAS  Google Scholar 

  • Segal L, Loeb L, Creely JJ (1954) An X-ray study of the decomposition product of the ethylamine-cellulose complex. J Polym Sci 13:193–206

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the Science and Technology Development Fund (STDF), Egypt, for financial support of the research activities related to project; Project ID 15203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Editorial responsibility: Prof. M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, K.A., Wahba, M.I., Abou-Zeid, R.E. et al. Development of carrageenan modified with nanocellulose-based materials in removing of Cu2+, Pb2+, Ca2+, Mg2+, and Fe2+. Int. J. Environ. Sci. Technol. 16, 5569–5576 (2019). https://doi.org/10.1007/s13762-018-1936-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-1936-z

Keywords

Navigation